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Abstract

Facial palsy (FP) considerably reduces patients’ quality of life, making accurate severity
assessment essential for personalized treatment. EMG-based biofeedback has shown potential
in enhancing recovery outcomes. This prospective study aimed to identify EMG time series
features that can both classify FP severity and inform biofeedback. Surface EMG was recorded
from FP patients and healthy controls during three facial movements. Repeated-measures
ANOVAs (rmANOVA) examined the effects of MOTION (movement/rest), SIDE
(healthy/affected), and House—Brackmann (HB) score across 20 EMG parameters. Correlations
between HB and EMG asymmetry indices were calculated, and Fisher scores assessed the
relevance of features in distinguishing HB levels. A total of 55 participants (51.2 + 14.73 years;
35 female) were included. RmANOV As revealed a highly significant effect of MOTION across
nearly all movement types (p < 0.001). Combining rmANOVA, correlation, and Fisher score
analyses, at least 5 of 20 EMG parameters emerged as robust indicators for evaluating paresis
severity and guiding biofeedback. These findings demonstrate that SEMG can reliably quantify
FP severity and inform biofeedback interventions, even in severe cases, supporting its
integration into personalized rehabilitation strategies, though further research is needed to
optimize recovery outcomes.
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Introduction

Facial palsy (FP) can substantially reduce quality of life
by affecting aesthetics, psychological well-being, and
physical functions such as oral competence, eye closure,
or temporomandibular joint movement [1-5]. While
idiopathic FP patients often experience rapid recovery,
post-iatrogenic FP can involve prolonged rehabilitation [6,
7]. Accurate, objective assessment of FP severity is
essential for monitoring recovery and guiding therapy.
Traditional grading scales, such as the House—Brackmann

(HB) score and Sunnybrook scale, are widely used but rely
heavily on examiner judgment [8—11]. Invasive EMG
(IEMQG) can objectively measure muscle activity but is
painful and time-consuming.

Surface EMG (sEMGQ) offers a non-invasive alternative,
capturing the summed electrical activity of multiple motor
units, though it may include interference from adjacent
muscles. Despite being less precise than iEMG, prior
studies have shown that SEMG can effectively assist in FP
grading [12-16]. For example, Franz et al. [13]
demonstrated significant SEMG variability on the affected
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side in FP patients post-vestibular schwannoma surgery
and a correlation with the Sunnybrook score. Another
study developed a semi-automated sSEMG-based system to
provide an objective alternative to the HB score, showing
promising classification performance, particularly after
vestibular schwannoma surgery [12]. However, these
studies were limited by small sample sizes, and the
specific EMG features for grading remain unclear due to
reliance on machine learning.

SsEMG is also increasingly applied in biofeedback training
for FP and post-facial nerve reconstruction [17-24].
Research indicates that sSEMG biofeedback can reduce
synkinetic activity in facial aberrant reinnervation
syndrome (FARS) [17, 24] and improve facial symmetry,
function, and movement even in chronic FP when
combined with neuromuscular retraining [20]. Existing
biofeedback programs vary widely in patient selection,
timing, and training frequency. EMG assessment can
include multiple time series features, such as root mean
square (RMS), mean absolute value (MAV), and variance
(VAR) [25-27], but most commercial biofeedback
systems are designed for limb muscles and primarily use
MAYV, RMS, or integrated EMG (iEMG) [28].

Despite these advances, it remains unclear which EMG
parameters are optimal for facial applications to monitor
FP severity and support biofeedback. This study aimed to
identify sEMG time series features suitable for both
classification and biofeedback in FP.

Materials and Methods

Study cohort

This prospective, single-center investigation involved 55
German participants to identify sEMG parameters
effective for evaluating the severity of facial palsy (FP)
and guiding biofeedback interventions. Participants were
recruited from both inpatient and outpatient services at the
Department of Neurosurgery, University Hospital
Tiibingen, Germany, between July and December 2024.
The study group included individuals who had either
undergone tumor resection in the cerebellopontine angle
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or had idiopathic FP, presenting with varying degrees of
unilateral FP based on the House—Brackmann (HB) scale.
A group of healthy volunteers without any history of
cranial surgery was also included. Exclusion criteria
encompassed Dbilateral FP, cognitive impairments,
pregnancy, and conditions preventing accurate facial EMG
measurement (e.g., significant facial hair or skin lesions).
The study received ethical approval from the local
committee and adhered to the Declaration of Helsinki,
with written informed consent obtained from all
participants.

Data acquisition and experimental setup

After assessing FP severity using the HB grading system
(I =no palsy to VI = complete paralysis), electrodes (4 mm
reusable Ag-AgCl snap electrodes, Biopac Systems, Inc.,
Goleta, CA, USA) were placed in a bipolar configuration
as depicted in Figure 1. The bipolar setup was chosen due
to its advantages over monopolar or common average
reference configurations [29], and care was taken to
minimize impedance to ensure optimal signal quality [30].
Each participant completed a 30-minute SEMG recording
session, consisting of six facial movement tasks presented
in random order: strong smile, light smile, forceful eye
closure, gentle eye closure, strong forehead raise, and
slight forehead raise. Each task was repeated 20 times with
a 3-second movement phase followed by a 4-second rest
phase. Instructions were provided on a computer screen,
with an auditory cue marking the beginning of each rest
period. Participants were trained in advance to ensure
correct execution: maximal versus subtle smile, complete
versus gentle eye closure, and full versus slight forehead
elevation.

Throughout the session, a trained investigator monitored
performance to verify that all movements were correctly
performed. EMG signals were recorded using the Neuro
Omega system (software version 1.6.5.0, Alpha Omega
Engineering, Nof HaGalil, Israel) at a sampling frequency
of 2000 Hz and stored on an external computer for
subsequent analysis.
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Figure 1. Experimental Setup

Six EMG channels were recorded following the layout
shown (bottom left) while participants performed six
facial movement tasks/runs (top left). Each run included
20 repetitions, with each trial consisting of a 3-second
MOVE phase followed by a 4-second REST phase (top
right).

EMG analysis and feature extraction

EMG data were processed offline using custom MATLAB
scripts (R2022b, MathWorks Inc., Natick, MA, USA).
Raw signals from all movement runs were imported and
preprocessed using a 4th-order Butterworth bandpass filter
(10250 Hz) and a 4th-order bandstop filter to remove
48.5-51.5 Hz interference. Based on the experimental
timing (3 s MOVE, 4 s REST), the recordings were
automatically segmented into MOVE and REST intervals
to ensure precise alignment with the stimulus protocol.
For each segment, 20 distinct time series features were
extracted separately for the healthy and affected facial
sides. Analyses included the absolute values of features for
MOVE and REST, as well as the calculation of an
asymmetry index (Al) to quantify differences between the
two sides. Using the mean absolute value (MAV) as an
example, an Al of 0% indicates perfect symmetry, while
higher Al values indicate increasing asymmetry between
the healthy and affected sides:

Al _ (MAVhealthy - MAVlesioned)
mav (MAVhealthy + MAVlesioned)

x 100 (1)
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Statistical analysis

All analyses were conducted using MATLAB (R2022b,
MathWorks Inc., Natick, MA, USA) and SPSS (Version
30.0, IBM Corp., Armonk, NY, USA). Univariate
repeated-measures ANOVAs (rmANOVAs)  were
performed separately for each facial movement (strong
smile, light smile, strong eye closure, light eye closure,
strong forehead raise, light forehead raise) using the
absolute values of the time series features. The analyses
tested the effects of movement state (MOTION: MOVE
vs. REST), facial side (SIDE: healthy vs. affected), and
House—Brackmann (HB) grade on all 20 sEMG features.
MOTION and SIDE were treated as between-subject
factors, whereas HB grade was included as a within-
subject factor. To account for anatomical relevance, only
electrodes corresponding to the specific facial movement
were analyzed (e.g., mouth electrodes for smile tasks). The
Mauchly test assessed sphericity, with Greenhouse—
Geisser corrections applied as needed.

Since HB grade is the sole within-subject factor, absolute
time series values are difficult to compare across
participants due to high inter-subject variability,
influenced by factors such as electrode placement,
impedance, and participant effort. To enable standardized
comparisons, all features were normalized to the healthy
side, resulting in the asymmetry index (Al). In addition to
rmANOVA, Spearman’s rank correlation was computed
between the Al of each sSEMG feature and HB grade (HB
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I for healthy controls, HB I patients, HB IT + III, HB IV +
V, HB VI).
The discriminative capability of each feature was further
assessed using the Fisher Score (FS) calculated from the
Al values:

Yoy i — w)?
2
f=1 N0}

FS(f) = @

where C represents the number of HB classes, ni the
number of samples in class i, pi the mean of class i, p the
overall mean, and ci®> the variance within class i. This
metric evaluates the ratio of between-class to within-class
variance, providing insight into each feature’s relevance
for distinguishing HB grades. Statistical significance was
set at p <0.05.

Results and Discussion

Participant and clinical profile

The study included 55 individuals (average age 51.2 +
14.73 years; 35 females), of whom 40 were patients with
facial palsy (HB grades II-VI) and 15 served as healthy
controls (HB I). Most facial palsy cases were secondary to
medical interventions (37/40, 92.5%). The mean duration
of FP among patients was 1.84 years, and 8 participants
(14.5%) showed signs of facial aberrant reinnervation
syndrome. All subjects completed the EMG protocol
without any adverse effects or complications. A detailed
overview of cohort characteristics is provided in Table 1.

Table 1. Cohort characteristics

Characteristic Patients (n = 48)
Age (years) 53.85+12.62
Gender
Male 17 (35.4%)
Female 31 (64.6%)
HB Grade
I 8 (16.7%)
I 8 (16.7%)
I 21 (43.8%)
v 5(10.4%)
\% 4 (8.3%)
VI 2 (4.2%)
Affected Side / Surgery
Right 19 (34.5%)
Left 29 (52.7%)
None / No FP 0 (0%)
Etiology of FP
Idiopathic 2 (4.2%)
Tumor-related 1(2.1%)
Tatrogenic 37 (77.1%)
No FP 8 (16.6%)
Time Since FP Onset /
Surgery
Overall 672.27 + 2158.78 days (~1.84 years)
HB 1 3.25 + 1.04 days
HB II-11I 850.97 + 2431.85 days
HBIV-V 839.44 + 2444.37 days
HB VI 5.00 £ 1.41 days
FARS
Yes 8 (16.7%)

Bull Pioneer Res Med Clin Sci, 2022, 2(1):114-125

Total (n = 55) Healthy Controls (n =7)

51.2+14.73 32.57+15.7
20 (36.4%) 3 (42.9%)
35 (63.6%) 4 (57.1%)
15 (27.2%) 7 (100%)
8 (14.5%) 0 (0%)
21 (38.2%) 0 (0%)
5(9.1%) 0 (0%)
4(7.3%) 0 (0%)
2 (3.6%) 0 (0%)
19 (34.5%) 0 (0%)
29 (52.7%) 0 (0%)
7 (12.7%) 7 (100%)
2 (3.6%) 0 (0%)
1(1.8%) 0 (0%)
37 (67.3%) 0 (0%)
15 (27.3%) 7 (100%)
672.27 + 2158.78 days 3
(~1.84 years)

3.25 £ 1.04 days -
850.97 + 2431.85 days -
839.44 + 2444.37 days -

5.00 £ 1.41 days —

8 (14.5%) 0 (0%)
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No 40 (83.3%)

47 (85.5%) 7 (100%)

Abbreviations: HB = House—Brackmann score; FP = facial palsy; FARS = facial aberrant reinnervation syndrome; surgery refers to posterior skull base

procedures (e.g., vestibular schwannoma or meningioma).

Parameters motion  classification — and

for
biofeedback applications

When comparing MOVE and REST conditions, the
rmANOVA revealed that this contrast shaped almost
every movement category in a marked way, and its
influence was most evident during high-intensity
contractions (p < 0.001; (Figure 2)). After this global
effect was confirmed, the subsequent contrasts showed
that slope sign change (SSC) served as the most reliable
indicator of whether a muscle was active or still. Several
other time-dependent EMG descriptors performed at a

very similar level, including iEMG, MAV, MMAVI,
MMAV2, RMS, LOG, STD, and IAV (Figure 3), all of
which demonstrated strong separation between MOVE
and REST.

A closer look at SSC revealed a clear pattern: on the
healthy SIDE, SSC values sharply distinguished the two
MOTION states. As the HB grade increased, however, the
gap between MOVE and REST on the affected side
narrowed progressively. Even with this reduction, SSC
continued to provide a usable separation of motion states
in individuals with advanced impairment, remaining

informative even at HB grades VI and V (Figure 4).
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Figure 2. The multivariate component of the repeated-measures analysis highlights that MOTION produces the most
pronounced statistical effect. In this visualization, the intensity of the box shading reflects the p-value associated with each
comparison, whereas the numerical entries correspond to the Wilks’ A statistics. Boxes left unshaded (white) indicate results

that did not reach statistical significance.
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Figure 3. The univariate rmANOVA examinations for the MOTION factor are displayed here, with the color shading of
each cell indicating the corresponding p-value. The numerical figures within the boxes denote the effect magnitude,
expressed as partial eta-squared (n?). Cells shown in white mark comparisons that failed to reach statistical significance.
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Figure 4. Analysis of slope sign change (SSC) across House—Brackmann (HB) grades revealed that SSC reliably
distinguishes between MOVE and REST on the unaffected side, but this contrast diminishes on the affected side as HB
severity increases, though it remains observable up to grades IV and V. No significant lateral differences (SIDE) were
noted for any movements, likely because the dataset included healthy participants and resting conditions are expected to
be symmetric. A notable HB effect was identified only during the “CLOSE EYES strong” task (Wilks’ A = 0.064, F(60,
114) =1.77, p = 0.005), with post hoc analysis showing significance for all EMG metrics except zero crossing (ZC), slope
sign change (SSC), Willison amplitude (WA), kurtosis (KURT), and skewness (SKEW).

In general, sSEMG measures effectively discriminate
motion regardless of whether the side is impaired or
healthy (MOTION). Differences between facial sides
(MOTIONXSIDE) emerged only for the “CLOSE EYES
strong” and “SMILE strong” movements. HB grade
influenced the sSEMG signal of the affected side during
active movements (MOTIONXSIDExHB) but not during
REST, reaching significance only for “SMILE strong.”
Interestingly, unilateral facial paralysis also appeared to
modulate SEMG signals on the healthy side, as seen in the
HB and MOTIONxHB analyses for both “CLOSE EYES
strong” and “SMILE strong.”

Feature extraction for facial nerve grading

Bull Pioneer Res Med Clin Sci, 2022, 2(1):114-125

When examining correlations between Al-derived EMG
features and HB scores, only a small subset of time-series
metrics showed significant associations for “CLOSE
EYES light” and “SMILE light” (Figure 5). In contrast,
MMAV2-AI demonstrated consistent correlation with HB
in five of six movement types (Figure 6), while iIEMG,
MAV, MMAV1, RMS, VAR, SSI, VO, DASDV, STD,
and IAV correlated with HB in four movements.
Forehead-related motions produced the strongest
correlations, despite relatively low Fisher scores (Figure
7). Across analyses, ZC, KURT, SSC, and SKEW poorly
differentiated HB grades, whereas iEMG, MAV, DASDV,
and IAV proved more reliable indicators for assessing HB
severity.
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Figure 5. The correlation heatmap illustrates how the asymmetry index (Al) of 20 time-series features across various facial
movements relates to the House—Brackmann score. The color of each box indicates the statistical significance (p-value),
while the numerical value inside shows the correlation strength (correlation coefficient), with white boxes denoting non-
significant correlations.
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Figure 6. The asymmetry index of the modified mean absolute value 2 (MMAV2) shows the highest correlations for
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Features with Fisher score > 0.2
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Figure 7. Fisher scores illustrate the ability of the asymmetry index (Al) of various EMG features to discriminate between
different HB grades. The upper panel displays the eight features with the highest discriminative power for each movement

type, while the lower panel highlights features with Fisher scores exceeding 0.2.

Previous studies on EMG biofeedback in facial palsy (FP)
have been limited by using devices originally designed for
limb muscles, despite the facial mimic muscles having
distinct structural characteristics compared to extremity
muscles [31]. In our study, we demonstrated substantial
differences among EMG time-series features both in their
correlation with HB grade and in their ability to
differentiate between movement and rest phases of facial
muscles. These findings indicate that future research
should consider specialized approaches for facial EMG
analysis.

Rutkowska et al. [28] reported that for emotional
expression studies, the most commonly employed EMG
features were MAV, RMS, and integrated EMG (i(EMG).
In line with this, our results suggest that slope sign change
(SSC) can effectively distinguish between movement
states (MOVE vs. REST); however, the SSC asymmetry
index showed weak correlation with HB scores across
movement types and intensities. Additionally, Fisher score
analysis indicated that SSC-ALI is not suitable for HB grade
classification. By combining repeated-measures analyses,
correlation studies, and Fisher scores, features such as
iIEMG, MAV, MMAV1, RMS, and IAV emerged as the
most reliable for the objectives of this study, corroborating
the findings of Rutkowska et al. [28]. These measures all
quantify EMG energy through mathematical operations
such as integration, averaging, or squaring [26, 27].
Specifically, iEMG reflects the cumulative EMG activity,
MAV calculates the mean absolute value, MMAV1
modifies MAV to better account for measurement
conditions, RMS captures signal energy and is particularly
responsive to high amplitudes, and IAV measures the total
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absolute amplitude over time, representing overall muscle
activity regardless of signal polarity.

Future work should further investigate these parameters in
sEMG and biofeedback studies on facial palsy,
particularly to determine whether combining multiple
features—or integrating artificial intelligence for
automated signal analysis—can improve outcomes
compared to using single parameters. This is especially
relevant for (i) classifying facial palsy severity and (ii)
predicting facial nerve recovery. Although numerous
studies have focused on automated FP classification using
facial images or video [32-35], few have leveraged
electrophysiological data such as EMG. In this context,
Holze et al. developed a semi-automated system
combining SEMG and machine learning to provide an
objective alternative to the subjective HB score [12],
achieving promising performance (AUC: 0.72-0.91).
While both our study and Holze et al. [12] primarily
involved patients with mild to moderate FP (HB I-III),
several methodological and clinical differences exist. Our
study included a larger cohort and emphasized not only FP
severity classification but also the identification of
interpretable and robust EMG features suitable for guiding
future biofeedback training. Consequently, EMG signals
were analyzed during both active movement and rest to
assess the ability of features to differentiate these states—
a distinction critical for biofeedback, where dynamic
changes and asymmetries between rest and activation are
key. Moreover, whereas machine learning approaches like
Holze et al.’s prioritize classification accuracy, they may
be less appropriate for biofeedback, which requires
transparent, user-understandable parameters to effectively
guide patient engagement and training.
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Most research on predictive models for facial palsy (FP)
has concentrated on estimating the likelihood of FP
occurrence following certain procedures, such as
vestibular schwannoma resection, and/or on clinical
factors like tumor size, patient age, or paresis severity [36—
39]. Only one study by Khisimoto et al. explored the use
of different artificial intelligence (AI) models to predict
synkinesia after FP using electroneurography (ENoG)
[40]. Their results showed strong predictive performance
(AUC: 0.90) using a machine-learning-based logistic
regression, representing an advancement compared to
Azuma et al. [41], who were unable to predict synkinesia
with conventional ENoG analysis. To our knowledge, no
studies have yet combined surface EMG (sSEMG) with Al
to forecast FP outcomes.

When considering sSEMG for facial biofeedback, it is
crucial to account for the stage of nerve injury and
recovery. Similar to peripheral limb nerve injuries, FP can
involve varying degrees of nerve damage, including
neuropraxia, axonotmesis, and neurotmesis [42—44],
which influence both clinical severity and recovery speed.
EMG-based biofeedback should therefore adapt to the
paralytic versus synkinetic phases of facial recovery.
Importantly, facial rehabilitation, such as neuromuscular
retraining, does not aim for maximal muscle contraction,
as excessive force can exacerbate synkinesia or
dyskinesia, even during paralysis [45]. Instead, therapy
focuses on controlled activation and coordination of facial
muscles. Our study addressed this by evaluating three
movement types at different contraction strengths (light
and strong), revealing that some features (e.g., kurtosis or
waveform length) are effective for strong movements but
less sensitive in detecting differences between movement
and rest at lower intensities. Accordingly, in early or
severe paresis, robust features like RMS and MAV may be
preferable, whereas in later phases—where improving
coordination and minimizing synkinesia is the goal—other
parameters may be more informative. A recovery phase—
specific selection of EMG features could enhance the
effectiveness of facial biofeedback by aligning signal
analysis with functional needs. Future studies might
objectively control contraction intensity, for example, by
referencing the sEMG from the healthy side, grading
efforts as a percentage of maximal force, or combining
sEMG with kinematic or visual measurements [46, 47].

Limitations

A key limitation of this study is the use of only 12
electrodes (six per facial side, bipolar configuration),
whereas the mimic musculature includes over 15 muscles.
This may introduce crosstalk and limit the precision of
muscle-specific measurements. High-density EMG could
provide more detailed insights [48—51], though additional
electrodes might reduce facial mobility, which is
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counterproductive for biofeedback applications. Another
limitation is the unbalanced cohort, with only seven
healthy controls compared to 48 patients; however, the
study focused on identifying suitable EMG features for
biofeedback rather than comparing groups. Uneven
distribution across HB grades reflects clinical reality but
restricts generalizability of subgroup analyses. Future
research with larger, more balanced cohorts is needed to
validate these findings. Additionally, factors such as
training frequency, session duration, and type of feedback
(visual, auditory, or multimodal) were not addressed,
though they likely influence biofeedback efficacy and
patient compliance and should be systematically explored
in subsequent studies. Integrating these aspects could help
optimize biofeedback interventions for different FP stages
and individual patient needs.

Conclusion

The results of this study demonstrate that SEMG can
reliably assess the severity of facial palsy and inform
biofeedback interventions. Selecting appropriate EMG
features, such as iEMG, RMS, or MAV, enables optimal
differentiation between movement and rest, even for small
or weak movements in severe paresis. This work provides
a foundation for future development of biofeedback
algorithms and training strategies tailored for facial palsy
rehabilitation.
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