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Abstract 

Facial palsy (FP) considerably reduces patients’ quality of life, making accurate severity 

assessment essential for personalized treatment. EMG-based biofeedback has shown potential 

in enhancing recovery outcomes. This prospective study aimed to identify EMG time series 

features that can both classify FP severity and inform biofeedback. Surface EMG was recorded 

from FP patients and healthy controls during three facial movements. Repeated-measures 

ANOVAs (rmANOVA) examined the effects of MOTION (movement/rest), SIDE 

(healthy/affected), and House–Brackmann (HB) score across 20 EMG parameters. Correlations 

between HB and EMG asymmetry indices were calculated, and Fisher scores assessed the 

relevance of features in distinguishing HB levels. A total of 55 participants (51.2 ± 14.73 years; 

35 female) were included. RmANOVAs revealed a highly significant effect of MOTION across 

nearly all movement types (p < 0.001). Combining rmANOVA, correlation, and Fisher score 

analyses, at least 5 of 20 EMG parameters emerged as robust indicators for evaluating paresis 

severity and guiding biofeedback. These findings demonstrate that sEMG can reliably quantify 

FP severity and inform biofeedback interventions, even in severe cases, supporting its 

integration into personalized rehabilitation strategies, though further research is needed to 

optimize recovery outcomes. 
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Introduction 

Facial palsy (FP) can substantially reduce quality of life 

by affecting aesthetics, psychological well-being, and 

physical functions such as oral competence, eye closure, 

or temporomandibular joint movement [1–5]. While 

idiopathic FP patients often experience rapid recovery, 

post-iatrogenic FP can involve prolonged rehabilitation [6, 

7]. Accurate, objective assessment of FP severity is 

essential for monitoring recovery and guiding therapy. 

Traditional grading scales, such as the House–Brackmann 

(HB) score and Sunnybrook scale, are widely used but rely 

heavily on examiner judgment [8–11]. Invasive EMG 

(iEMG) can objectively measure muscle activity but is 

painful and time-consuming. 

Surface EMG (sEMG) offers a non-invasive alternative, 

capturing the summed electrical activity of multiple motor 

units, though it may include interference from adjacent 

muscles. Despite being less precise than iEMG, prior 

studies have shown that sEMG can effectively assist in FP 

grading [12–16]. For example, Franz et al. [13] 

demonstrated significant sEMG variability on the affected 
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side in FP patients post-vestibular schwannoma surgery 

and a correlation with the Sunnybrook score. Another 

study developed a semi-automated sEMG-based system to 

provide an objective alternative to the HB score, showing 

promising classification performance, particularly after 

vestibular schwannoma surgery [12]. However, these 

studies were limited by small sample sizes, and the 

specific EMG features for grading remain unclear due to 

reliance on machine learning. 

sEMG is also increasingly applied in biofeedback training 

for FP and post-facial nerve reconstruction [17–24]. 

Research indicates that sEMG biofeedback can reduce 

synkinetic activity in facial aberrant reinnervation 

syndrome (FARS) [17, 24] and improve facial symmetry, 

function, and movement even in chronic FP when 

combined with neuromuscular retraining [20]. Existing 

biofeedback programs vary widely in patient selection, 

timing, and training frequency. EMG assessment can 

include multiple time series features, such as root mean 

square (RMS), mean absolute value (MAV), and variance 

(VAR) [25–27], but most commercial biofeedback 

systems are designed for limb muscles and primarily use 

MAV, RMS, or integrated EMG (iEMG) [28]. 

Despite these advances, it remains unclear which EMG 

parameters are optimal for facial applications to monitor 

FP severity and support biofeedback. This study aimed to 

identify sEMG time series features suitable for both 

classification and biofeedback in FP. 

Materials and Methods 

Study cohort 

This prospective, single-center investigation involved 55 

German participants to identify sEMG parameters 

effective for evaluating the severity of facial palsy (FP) 

and guiding biofeedback interventions. Participants were 

recruited from both inpatient and outpatient services at the 

Department of Neurosurgery, University Hospital 

Tübingen, Germany, between July and December 2024. 

The study group included individuals who had either 

undergone tumor resection in the cerebellopontine angle 

or had idiopathic FP, presenting with varying degrees of 

unilateral FP based on the House–Brackmann (HB) scale. 

A group of healthy volunteers without any history of 

cranial surgery was also included. Exclusion criteria 

encompassed bilateral FP, cognitive impairments, 

pregnancy, and conditions preventing accurate facial EMG 

measurement (e.g., significant facial hair or skin lesions). 

The study received ethical approval from the local 

committee and adhered to the Declaration of Helsinki, 

with written informed consent obtained from all 

participants. 

Data acquisition and experimental setup 

After assessing FP severity using the HB grading system 

(I = no palsy to VI = complete paralysis), electrodes (4 mm 

reusable Ag-AgCl snap electrodes, Biopac Systems, Inc., 

Goleta, CA, USA) were placed in a bipolar configuration 

as depicted in Figure 1. The bipolar setup was chosen due 

to its advantages over monopolar or common average 

reference configurations [29], and care was taken to 

minimize impedance to ensure optimal signal quality [30]. 

Each participant completed a 30-minute sEMG recording 

session, consisting of six facial movement tasks presented 

in random order: strong smile, light smile, forceful eye 

closure, gentle eye closure, strong forehead raise, and 

slight forehead raise. Each task was repeated 20 times with 

a 3-second movement phase followed by a 4-second rest 

phase. Instructions were provided on a computer screen, 

with an auditory cue marking the beginning of each rest 

period. Participants were trained in advance to ensure 

correct execution: maximal versus subtle smile, complete 

versus gentle eye closure, and full versus slight forehead 

elevation. 

Throughout the session, a trained investigator monitored 

performance to verify that all movements were correctly 

performed. EMG signals were recorded using the Neuro 

Omega system (software version 1.6.5.0, Alpha Omega 

Engineering, Nof HaGalil, Israel) at a sampling frequency 

of 2000 Hz and stored on an external computer for 

subsequent analysis. 
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Figure 1. Experimental Setup 

Six EMG channels were recorded following the layout 

shown (bottom left) while participants performed six 

facial movement tasks/runs (top left). Each run included 

20 repetitions, with each trial consisting of a 3-second 

MOVE phase followed by a 4-second REST phase (top 

right). 

EMG analysis and feature extraction 

EMG data were processed offline using custom MATLAB 

scripts (R2022b, MathWorks Inc., Natick, MA, USA). 

Raw signals from all movement runs were imported and 

preprocessed using a 4th-order Butterworth bandpass filter 

(10–250 Hz) and a 4th-order bandstop filter to remove 

48.5–51.5 Hz interference. Based on the experimental 

timing (3 s MOVE, 4 s REST), the recordings were 

automatically segmented into MOVE and REST intervals 

to ensure precise alignment with the stimulus protocol. 

For each segment, 20 distinct time series features were 

extracted separately for the healthy and affected facial 

sides. Analyses included the absolute values of features for 

MOVE and REST, as well as the calculation of an 

asymmetry index (AI) to quantify differences between the 

two sides. Using the mean absolute value (MAV) as an 

example, an AI of 0% indicates perfect symmetry, while 

higher AI values indicate increasing asymmetry between 

the healthy and affected sides: 

𝐴𝐼𝑀𝐴𝑉 =
(𝑀𝐴𝑉ℎ𝑒𝑎𝑙𝑡ℎ𝑦 −𝑀𝐴𝑉𝑙𝑒𝑠𝑖𝑜𝑛𝑒𝑑)

(𝑀𝐴𝑉ℎ𝑒𝑎𝑙𝑡ℎ𝑦 +𝑀𝐴𝑉𝑙𝑒𝑠𝑖𝑜𝑛𝑒𝑑)
× 100 (1) 

Statistical analysis 

All analyses were conducted using MATLAB (R2022b, 

MathWorks Inc., Natick, MA, USA) and SPSS (Version 

30.0, IBM Corp., Armonk, NY, USA). Univariate 

repeated-measures ANOVAs (rmANOVAs) were 

performed separately for each facial movement (strong 

smile, light smile, strong eye closure, light eye closure, 

strong forehead raise, light forehead raise) using the 

absolute values of the time series features. The analyses 

tested the effects of movement state (MOTION: MOVE 

vs. REST), facial side (SIDE: healthy vs. affected), and 

House–Brackmann (HB) grade on all 20 sEMG features. 

MOTION and SIDE were treated as between-subject 

factors, whereas HB grade was included as a within-

subject factor. To account for anatomical relevance, only 

electrodes corresponding to the specific facial movement 

were analyzed (e.g., mouth electrodes for smile tasks). The 

Mauchly test assessed sphericity, with Greenhouse–

Geisser corrections applied as needed. 

Since HB grade is the sole within-subject factor, absolute 

time series values are difficult to compare across 

participants due to high inter-subject variability, 

influenced by factors such as electrode placement, 

impedance, and participant effort. To enable standardized 

comparisons, all features were normalized to the healthy 

side, resulting in the asymmetry index (AI). In addition to 

rmANOVA, Spearman’s rank correlation was computed 

between the AI of each sEMG feature and HB grade (HB 
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I for healthy controls, HB I patients, HB II + III, HB IV + 

V, HB VI). 

The discriminative capability of each feature was further 

assessed using the Fisher Score (FS) calculated from the 

AI values: 

𝐹𝑆(𝑓) =
∑ 𝑛𝑖(𝜇𝑖 − 𝜇)2𝑐
𝑖=1

∑ 𝑛𝑖𝜎𝑖
2𝑐

𝑖=1

 (2) 

where C represents the number of HB classes, ni the 

number of samples in class i, μi the mean of class i, μ the 

overall mean, and σi2 the variance within class i. This 

metric evaluates the ratio of between-class to within-class 

variance, providing insight into each feature’s relevance 

for distinguishing HB grades. Statistical significance was 

set at p < 0.05. 

Results and Discussion 

Participant and clinical profile 

The study included 55 individuals (average age 51.2 ± 

14.73 years; 35 females), of whom 40 were patients with 

facial palsy (HB grades II–VI) and 15 served as healthy 

controls (HB I). Most facial palsy cases were secondary to 

medical interventions (37/40, 92.5%). The mean duration 

of FP among patients was 1.84 years, and 8 participants 

(14.5%) showed signs of facial aberrant reinnervation 

syndrome. All subjects completed the EMG protocol 

without any adverse effects or complications. A detailed 

overview of cohort characteristics is provided in Table 1. 

 

Table 1. Cohort characteristics 

Characteristic Patients (n = 48) Total (n = 55) Healthy Controls (n = 7) 

Age (years) 53.85 ± 12.62 51.2 ± 14.73 32.57 ± 15.7 

Gender    

Male 17 (35.4%) 20 (36.4%) 3 (42.9%) 

Female 31 (64.6%) 35 (63.6%) 4 (57.1%) 

HB Grade    

I 8 (16.7%) 15 (27.2%) 7 (100%) 

II 8 (16.7%) 8 (14.5%) 0 (0%) 

III 21 (43.8%) 21 (38.2%) 0 (0%) 

IV 5 (10.4%) 5 (9.1%) 0 (0%) 

V 4 (8.3%) 4 (7.3%) 0 (0%) 

VI 2 (4.2%) 2 (3.6%) 0 (0%) 

Affected Side / Surgery    

Right 19 (34.5%) 19 (34.5%) 0 (0%) 

Left 29 (52.7%) 29 (52.7%) 0 (0%) 

None / No FP 0 (0%) 7 (12.7%) 7 (100%) 

Etiology of FP    

Idiopathic 2 (4.2%) 2 (3.6%) 0 (0%) 

Tumor-related 1 (2.1%) 1 (1.8%) 0 (0%) 

Iatrogenic 37 (77.1%) 37 (67.3%) 0 (0%) 

No FP 8 (16.6%) 15 (27.3%) 7 (100%) 

Time Since FP Onset / 

Surgery 
   

Overall 672.27 ± 2158.78 days (~1.84 years) 
672.27 ± 2158.78 days 

(~1.84 years) 
– 

HB I 3.25 ± 1.04 days 3.25 ± 1.04 days – 

HB II–III 850.97 ± 2431.85 days 850.97 ± 2431.85 days – 

HB IV–V 839.44 ± 2444.37 days 839.44 ± 2444.37 days – 

HB VI 5.00 ± 1.41 days 5.00 ± 1.41 days – 

FARS    

Yes 8 (16.7%) 8 (14.5%) 0 (0%) 
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No 40 (83.3%) 47 (85.5%) 7 (100%) 

Abbreviations: HB = House–Brackmann score; FP = facial palsy; FARS = facial aberrant reinnervation syndrome; surgery refers to posterior skull base 

procedures (e.g., vestibular schwannoma or meningioma). 

Parameters for motion classification and 

biofeedback applications 

When comparing MOVE and REST conditions, the 

rmANOVA revealed that this contrast shaped almost 

every movement category in a marked way, and its 

influence was most evident during high-intensity 

contractions (p < 0.001; (Figure 2)). After this global 

effect was confirmed, the subsequent contrasts showed 

that slope sign change (SSC) served as the most reliable 

indicator of whether a muscle was active or still. Several 

other time-dependent EMG descriptors performed at a 

very similar level, including iEMG, MAV, MMAV1, 

MMAV2, RMS, LOG, STD, and IAV (Figure 3), all of 

which demonstrated strong separation between MOVE 

and REST. 

A closer look at SSC revealed a clear pattern: on the 

healthy SIDE, SSC values sharply distinguished the two 

MOTION states. As the HB grade increased, however, the 

gap between MOVE and REST on the affected side 

narrowed progressively. Even with this reduction, SSC 

continued to provide a usable separation of motion states 

in individuals with advanced impairment, remaining 

informative even at HB grades VI and V (Figure 4). 

 

 

Figure 2. The multivariate component of the repeated-measures analysis highlights that MOTION produces the most 

pronounced statistical effect. In this visualization, the intensity of the box shading reflects the p-value associated with each 

comparison, whereas the numerical entries correspond to the Wilks’ λ statistics. Boxes left unshaded (white) indicate results 

that did not reach statistical significance. 

 

 

Figure 3. The univariate rmANOVA examinations for the MOTION factor are displayed here, with the color shading of 

each cell indicating the corresponding p-value. The numerical figures within the boxes denote the effect magnitude, 

expressed as partial eta-squared (η²). Cells shown in white mark comparisons that failed to reach statistical significance. 
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Figure 4. Analysis of slope sign change (SSC) across House–Brackmann (HB) grades revealed that SSC reliably 

distinguishes between MOVE and REST on the unaffected side, but this contrast diminishes on the affected side as HB 

severity increases, though it remains observable up to grades IV and V. No significant lateral differences (SIDE) were 

noted for any movements, likely because the dataset included healthy participants and resting conditions are expected to 

be symmetric. A notable HB effect was identified only during the “CLOSE EYES strong” task (Wilks’ Λ = 0.064, F(60, 

114) = 1.77, p = 0.005), with post hoc analysis showing significance for all EMG metrics except zero crossing (ZC), slope 

sign change (SSC), Willison amplitude (WA), kurtosis (KURT), and skewness (SKEW). 

In general, sEMG measures effectively discriminate 

motion regardless of whether the side is impaired or 

healthy (MOTION). Differences between facial sides 

(MOTIONxSIDE) emerged only for the “CLOSE EYES 

strong” and “SMILE strong” movements. HB grade 

influenced the sEMG signal of the affected side during 

active movements (MOTIONxSIDExHB) but not during 

REST, reaching significance only for “SMILE strong.” 

Interestingly, unilateral facial paralysis also appeared to 

modulate sEMG signals on the healthy side, as seen in the 

HB and MOTIONxHB analyses for both “CLOSE EYES 

strong” and “SMILE strong.” 

Feature extraction for facial nerve grading 

When examining correlations between AI-derived EMG 

features and HB scores, only a small subset of time-series 

metrics showed significant associations for “CLOSE 

EYES light” and “SMILE light” (Figure 5). In contrast, 

MMAV2-AI demonstrated consistent correlation with HB 

in five of six movement types (Figure 6), while iEMG, 

MAV, MMAV1, RMS, VAR, SSI, VO, DASDV, STD, 

and IAV correlated with HB in four movements. 

Forehead-related motions produced the strongest 

correlations, despite relatively low Fisher scores (Figure 

7). Across analyses, ZC, KURT, SSC, and SKEW poorly 

differentiated HB grades, whereas iEMG, MAV, DASDV, 

and IAV proved more reliable indicators for assessing HB 

severity. 
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Figure 5. The correlation heatmap illustrates how the asymmetry index (AI) of 20 time-series features across various facial 

movements relates to the House–Brackmann score. The color of each box indicates the statistical significance (p-value), 

while the numerical value inside shows the correlation strength (correlation coefficient), with white boxes denoting non-

significant correlations. 

 

 

Figure 6. The asymmetry index of the modified mean absolute value 2 (MMAV2) shows the highest correlations for 

movements of the forehead. 

 

 

a) 
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b) 

Figure 7. Fisher scores illustrate the ability of the asymmetry index (AI) of various EMG features to discriminate between 

different HB grades. The upper panel displays the eight features with the highest discriminative power for each movement 

type, while the lower panel highlights features with Fisher scores exceeding 0.2. 

 

Previous studies on EMG biofeedback in facial palsy (FP) 

have been limited by using devices originally designed for 

limb muscles, despite the facial mimic muscles having 

distinct structural characteristics compared to extremity 

muscles [31]. In our study, we demonstrated substantial 

differences among EMG time-series features both in their 

correlation with HB grade and in their ability to 

differentiate between movement and rest phases of facial 

muscles. These findings indicate that future research 

should consider specialized approaches for facial EMG 

analysis. 

Rutkowska et al. [28] reported that for emotional 

expression studies, the most commonly employed EMG 

features were MAV, RMS, and integrated EMG (iEMG). 

In line with this, our results suggest that slope sign change 

(SSC) can effectively distinguish between movement 

states (MOVE vs. REST); however, the SSC asymmetry 

index showed weak correlation with HB scores across 

movement types and intensities. Additionally, Fisher score 

analysis indicated that SSC-AI is not suitable for HB grade 

classification. By combining repeated-measures analyses, 

correlation studies, and Fisher scores, features such as 

iEMG, MAV, MMAV1, RMS, and IAV emerged as the 

most reliable for the objectives of this study, corroborating 

the findings of Rutkowska et al. [28]. These measures all 

quantify EMG energy through mathematical operations 

such as integration, averaging, or squaring [26, 27]. 

Specifically, iEMG reflects the cumulative EMG activity, 

MAV calculates the mean absolute value, MMAV1 

modifies MAV to better account for measurement 

conditions, RMS captures signal energy and is particularly 

responsive to high amplitudes, and IAV measures the total 

absolute amplitude over time, representing overall muscle 

activity regardless of signal polarity. 

Future work should further investigate these parameters in 

sEMG and biofeedback studies on facial palsy, 

particularly to determine whether combining multiple 

features—or integrating artificial intelligence for 

automated signal analysis—can improve outcomes 

compared to using single parameters. This is especially 

relevant for (i) classifying facial palsy severity and (ii) 

predicting facial nerve recovery. Although numerous 

studies have focused on automated FP classification using 

facial images or video [32–35], few have leveraged 

electrophysiological data such as EMG. In this context, 

Holze et al. developed a semi-automated system 

combining sEMG and machine learning to provide an 

objective alternative to the subjective HB score [12], 

achieving promising performance (AUC: 0.72–0.91). 

While both our study and Holze et al. [12] primarily 

involved patients with mild to moderate FP (HB I–III), 

several methodological and clinical differences exist. Our 

study included a larger cohort and emphasized not only FP 

severity classification but also the identification of 

interpretable and robust EMG features suitable for guiding 

future biofeedback training. Consequently, EMG signals 

were analyzed during both active movement and rest to 

assess the ability of features to differentiate these states—

a distinction critical for biofeedback, where dynamic 

changes and asymmetries between rest and activation are 

key. Moreover, whereas machine learning approaches like 

Holze et al.’s prioritize classification accuracy, they may 

be less appropriate for biofeedback, which requires 

transparent, user-understandable parameters to effectively 

guide patient engagement and training. 
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Most research on predictive models for facial palsy (FP) 

has concentrated on estimating the likelihood of FP 

occurrence following certain procedures, such as 

vestibular schwannoma resection, and/or on clinical 

factors like tumor size, patient age, or paresis severity [36–

39]. Only one study by Khisimoto et al. explored the use 

of different artificial intelligence (AI) models to predict 

synkinesia after FP using electroneurography (ENoG) 

[40]. Their results showed strong predictive performance 

(AUC: 0.90) using a machine-learning-based logistic 

regression, representing an advancement compared to 

Azuma et al. [41], who were unable to predict synkinesia 

with conventional ENoG analysis. To our knowledge, no 

studies have yet combined surface EMG (sEMG) with AI 

to forecast FP outcomes. 

When considering sEMG for facial biofeedback, it is 

crucial to account for the stage of nerve injury and 

recovery. Similar to peripheral limb nerve injuries, FP can 

involve varying degrees of nerve damage, including 

neuropraxia, axonotmesis, and neurotmesis [42–44], 

which influence both clinical severity and recovery speed. 

EMG-based biofeedback should therefore adapt to the 

paralytic versus synkinetic phases of facial recovery. 

Importantly, facial rehabilitation, such as neuromuscular 

retraining, does not aim for maximal muscle contraction, 

as excessive force can exacerbate synkinesia or 

dyskinesia, even during paralysis [45]. Instead, therapy 

focuses on controlled activation and coordination of facial 

muscles. Our study addressed this by evaluating three 

movement types at different contraction strengths (light 

and strong), revealing that some features (e.g., kurtosis or 

waveform length) are effective for strong movements but 

less sensitive in detecting differences between movement 

and rest at lower intensities. Accordingly, in early or 

severe paresis, robust features like RMS and MAV may be 

preferable, whereas in later phases—where improving 

coordination and minimizing synkinesia is the goal—other 

parameters may be more informative. A recovery phase–

specific selection of EMG features could enhance the 

effectiveness of facial biofeedback by aligning signal 

analysis with functional needs. Future studies might 

objectively control contraction intensity, for example, by 

referencing the sEMG from the healthy side, grading 

efforts as a percentage of maximal force, or combining 

sEMG with kinematic or visual measurements [46, 47]. 

Limitations 

A key limitation of this study is the use of only 12 

electrodes (six per facial side, bipolar configuration), 

whereas the mimic musculature includes over 15 muscles. 

This may introduce crosstalk and limit the precision of 

muscle-specific measurements. High-density EMG could 

provide more detailed insights [48–51], though additional 

electrodes might reduce facial mobility, which is 

counterproductive for biofeedback applications. Another 

limitation is the unbalanced cohort, with only seven 

healthy controls compared to 48 patients; however, the 

study focused on identifying suitable EMG features for 

biofeedback rather than comparing groups. Uneven 

distribution across HB grades reflects clinical reality but 

restricts generalizability of subgroup analyses. Future 

research with larger, more balanced cohorts is needed to 

validate these findings. Additionally, factors such as 

training frequency, session duration, and type of feedback 

(visual, auditory, or multimodal) were not addressed, 

though they likely influence biofeedback efficacy and 

patient compliance and should be systematically explored 

in subsequent studies. Integrating these aspects could help 

optimize biofeedback interventions for different FP stages 

and individual patient needs. 

Conclusion 

The results of this study demonstrate that sEMG can 

reliably assess the severity of facial palsy and inform 

biofeedback interventions. Selecting appropriate EMG 

features, such as iEMG, RMS, or MAV, enables optimal 

differentiation between movement and rest, even for small 

or weak movements in severe paresis. This work provides 

a foundation for future development of biofeedback 

algorithms and training strategies tailored for facial palsy 

rehabilitation. 
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