

Bulletin of Pioneering Researches of Medical and Clinical Science

Available online: https://bprmcs.com 2024 | Volume 4 | Issue 2 | Page: 78-87

Augmented Renal Clearance and Its Influence on Vancomycin Pharmacokinetics and Pharmacodynamics in Critically Ill **Patients**

Yujie Yi¹, Xiaotong Li¹, Hu Liu^{2*}, Haitao Xie²

Abstract

Augmented renal clearance (ARC), defined as a creatinine clearance (CrCl) greater than 130 mL/min/1.73 m², is increasingly recognized among critically ill patients, affecting roughly onethird to two-thirds of this population. Standard vancomycin dosing regimens are often inadequate for these individuals, as enhanced renal filtration accelerates drug elimination and leads to subtherapeutic serum concentrations, compromising antimicrobial efficacy. The present review examines how ARC influences vancomycin's pharmacokinetic and pharmacodynamic (PK/PD) parameters and explores approaches for optimizing dosing in affected patients. A systematic search of the MEDLINE and EMBASE databases was performed in September 2023 to identify studies evaluating vancomycin use in critically ill adults with ARC. Reports focused on pediatric patients or lacking detailed PK data were excluded. Twenty-one studies met the selection criteria. The collective findings revealed a strong association between elevated CrCl and increased vancomycin clearance, supporting the need for higher or individualized dosing strategies to reach therapeutic exposure. Younger age emerged as a consistent predictor of ARC and altered vancomycin disposition. This review summarizes key PK/PD alterations, assesses available dosing guidelines, and proposes evidence-based adjustments aimed at improving target attainment and reducing the likelihood of treatment failure in patients with ARC.

Keywords: Vancomycin, Augmented renal clearance, Pharmacokinetics, Pharmacodynamics, Creatinine clearance

Corresponding author: Hu Liu E-mail: Linhu1975@163.com

How to Cite This Article: Yi Y, Li X, Liu H, Xie H. Augmented Renal Clearance and Its Influence on Vancomycin Pharmacokinetics and Pharmacodynamics in Critically III Patients. Bull Pioneer Res Med Clin Sci. 2024;4(2):78-87. https://doi.org/10.51847/yL5jEKKhNn

Introduction

Hospital-acquired infections remain a major concern in intensive care units (ICUs), where they contribute to prolonged hospitalizations and higher mortality rates. As a result, the use of antimicrobial agents in ICUs is reported to be 5–10 times greater than in general hospital wards [1]. Ensuring prompt administration and achieving optimal serum concentrations of these drugs are essential for effective infection control. However, this objective is often complicated by the profound and variable pathophysiological alterations seen in critically ill patients. These changes arise from the underlying acute or chronic disease processes, as well as from therapeutic interventions administered in the ICU. Such conditions often produce a hyperdynamic circulatory state with increased cardiac output, which enhances drug clearance. inflammatory cascades and permeability lead to significant fluid shifts, expanding the

¹ Department of Pulmonary Medicine, Shanghai Putuo District People's Hospital, Shanghai 200060, China.

² Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.

volume of distribution [2,3]. Together, these factors alter the pharmacokinetic and pharmacodynamic (PK/PD) profiles of many antimicrobials, making treatment outcomes unpredictable. Because renal elimination is the main route of clearance for numerous hydrophilic antibiotics—such as β -lactams, aminoglycosides, and vancomycin—any alteration in renal function can markedly affect drug disposition [1,2].

Pharmacokinetics (PK) encompasses the processes that govern the movement of a drug through the body, including absorption, distribution, metabolism, and elimination. Key parameters describing these processes include clearance (CL), volume of distribution (Vd), and elimination half-life (t₁/₂). Pharmacodynamics (PD), in contrast, focuses on the relationship between drug concentration and antimicrobial effect, often expressed as the minimum inhibitory concentration (MIC)—the lowest drug concentration that prevents visible bacterial growth in standardized conditions [4].

Certain pathological states observed in the ICU, such as trauma, burns, and sepsis, are characterized by hyperdynamic circulation and increased renal perfusion, which can enhance glomerular filtration and accelerate the clearance of renally eliminated antimicrobials [4]. This phenomenon, known as augmented renal clearance (ARC), is defined as a creatinine clearance (CrCl) exceeding 130 mL/min/1.73 m² and represents a frequently encountered physiological alteration in critically ill patients [5]. Although its underlying mechanisms are not fully understood, ARC is believed to result primarily from enhanced glomerular filtration associated with increased renal blood flow. The reported prevalence of ARC ranges from 30% to 65% among ICU patients and may reach 50-85% in specific subgroups such as those with sepsis or traumatic injury [6, 7]. Factors such as younger age, male sex, and the absence of chronic comorbidities have been identified as significant predictors of ARC [6,8].

The impact of ARC is particularly important for antimicrobials exhibiting time-dependent activity and short elimination half-lives, as accelerated clearance can lead to subtherapeutic exposure. Vancomycin, a glycopeptide antibiotic primarily eliminated by the kidneys, is especially affected. It serves as the first-line treatment for severe Gram-positive infections, notably those caused by methicillin-resistant *Staphylococcus aureus* (MRSA) [9–13]. Vancomycin demonstrates both time- and concentration-dependent killing, with efficacy best described by the ratio of the 24-hour area under the concentration—time curve to the MIC (AUC₍₂₄₎/MIC) [14]. Therapeutic monitoring is typically performed through measurement of both AUC and trough concentration (C_{trou9h}) to ensure adequate exposure while minimizing

adverse effects such as nephrotoxicity, ototoxicity, and hypersensitivity reactions [9,15].

Despite the use of therapeutic drug monitoring (TDM), achieving target vancomycin concentrations remains challenging in ICU patients with ARC, as accelerated renal elimination often results in subtherapeutic levels and treatment failure. Accurate dose adjustment is therefore crucial but difficult, as traditional renal function estimation equations such as the Cockcroft—Gault (CG) formula may not reliably predict clearance in patients with ARC [16, 17]. This uncertainty underscores the need for evidence-based dosing strategies and clearer clinical guidelines to ensure effective and safe vancomycin therapy in this population.

The present review aims to systematically evaluate and synthesize existing evidence on vancomycin dosing, efficacy, and safety in critically ill adults with augmented renal clearance. Additionally, it seeks to propose practical dosing recommendations tailored to this patient group to improve therapeutic success and minimize the risk of underexposure.

Materials and Methods

Search strategy

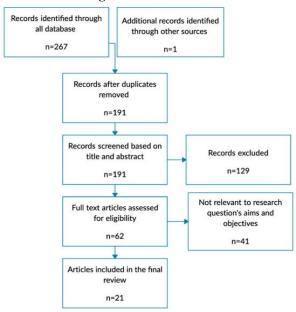
A comprehensive literature search was conducted on 26 September 2023 using the MEDLINE and EMBASE databases. The search aimed to identify all available studies investigating the influence of augmented renal clearance (ARC) on vancomycin pharmacokinetics and pharmacodynamics in critically ill adults. To ensure inclusivity, a broad combination of relevant keywords and Boolean operators was used. including: ("Augmented renal clearance" OR "ARC" OR "increas* renal clearance" OR "enhanc* renal clearance" OR "enhance* renal function" OR "renal hyperfiltration" OR "augmented kidney clearance") AND ("vancomycin"). All retrieved records from the two databases were combined, and duplicates were removed before initiating the screening process to avoid redundancy.

Study selection

Eligible studies were those that provided quantitative or qualitative data regarding the effect of ARC on vancomycin therapy in critically ill adult patients. Studies were excluded if they were duplicates, non-human research, pediatric studies, abstracts without full publications, review papers, case reports, letters, commentaries, or opinion pieces. Non-English articles were excluded only when they could not be reliably translated using online translation tools.

Following the removal of duplicates in EndNote X9, titles and abstracts were screened for relevance according to the predefined eligibility criteria. The full texts of all potentially eligible studies were then retrieved for detailed

evaluation. Any disagreements or uncertainties regarding study eligibility were resolved by mutual consensus among the reviewing authors.


Data extraction

Two independent reviewers extracted data from each eligible study using a standardized collection form to ensure consistency and accuracy. For every study included, the following information was recorded: author name and publication year, study location and period, research design, study objective, ARC definition, creatinine clearance (CrCl) estimation method, population demographics (age, sex, and clinical setting), details of vancomycin administration (dose, frequency, and regimen), and major outcomes or findings. Any discrepancies between reviewers were resolved by discussion until agreement was reached.

Results

Study selection

The initial database search yielded 267 records, and one additional relevant article was identified through manual searching. After removing duplicates, 191 unique articles remained. Of these, 129 were excluded after screening titles and abstracts because they did not satisfy the inclusion criteria. The remaining 62 articles were retrieved for full-text review. Following comprehensive evaluation, 21 studies fulfilled all eligibility requirements and were included in the final analysis (Table S1). The main reasons for exclusion at this stage were insufficient data related to ARC or vancomycin pharmacokinetics, and a focus on pediatric populations. The overall study selection process is summarized in **Figure 1**.

Figure 1. Flowchart of the results of literature search and selection process

Most of the studies included in this review were observational in nature. Fourteen adopted a retrospective design, five were prospective, one combined both prospective and retrospective methods [7], and another was a randomized clinical trial [12]. These investigations encompassed a wide spectrum of intensive care settings, including medical, surgical, neurosurgical, hemorrhagic stroke, traumatic brain injury (TBI), and septic populations, and were conducted across seven different countries. Although some of the reports did not explicitly describe their participants as critically ill or specify their underlying diagnoses, all involved hospitalized adults undergoing vancomycin treatment for severe infections [18]. The average age of the participants ranged between 33 and 76 years, while the proportion of men varied widely, from 28% to 80%, across study populations (Table S1).

Definitions of augmented renal clearance (ARC) varied slightly among the studies, though most adopted the commonly accepted cutoff value of creatinine clearance (CrCl) ≥130 mL/min. Variations in reported units, such as mL/min versus mL/min/1.73 m², were noted. A few exceptions existed—for instance, Campassi *et al.* [19] defined ARC as CrCl ≥120 mL/min, and one study [20] included patients with CrCl ≥120 mL/min without providing a formal definition. Methods for assessing CrCl were inconsistent. The Cockcroft–Gault equation was the most frequently applied, appearing in 57% of studies, followed by measured urinary CrCl in 24% and the CKD-EPI formula in about 4%. A few papers compared more than one estimation method [11,19, 21], while one did not specify its calculation approach [20].

Across nearly all investigations, patients were classified based on the presence or absence of ARC. The reported prevalence of ARC among critically ill patients ranged from 16.4% to 72% [10,18,19, 22–27]. In general, younger individuals, males, those with higher body weight, and patients with trauma or brain injury were more likely to exhibit augmented clearance. Additional factors such as mechanical ventilation, enteral feeding, hemodynamic instability, low serum albumin or platelet levels, reduced serum creatinine, elevated glomerular filtration rate, febrile neutropenia, intracerebral or subarachnoid hemorrhage, and overall lower illness severity were also associated with ARC [20,23,26,28]. Zhao et al. [26] further evaluated two predictive tools—the ARCTIC and ARC risk scores—and demonstrated that 58.9% of ICU patients and 88.9% of trauma patients classified as high risk by these scores were found to have ARC.

A substantial number of studies explored how ARC influences vancomycin therapy. Population pharmacokinetic (PopPK) modeling was frequently employed to predict optimal dosing and describe vancomycin kinetics in these patients [8,18,27,29]. Some

investigations focused on developing individualized dosing nomograms or new mathematical models incorporating relevant covariates [7,28,30], while others used data from therapeutic drug monitoring (TDM) to refine dosing recommendations. A few papers validated PopPK software or dosing nomograms across patients with differing renal functions [8,20].

The clinical effects of ARC on vancomycin efficacy were generally assessed through pharmacokinetic and pharmacodynamic parameters, including clearance, volume of distribution, area under the concentration—time curve over 24 hours to minimum inhibitory concentration (AUC24/MIC), and trough concentration (Ctrough). An overall pattern emerged showing that as CrCl increased, vancomycin serum levels declined. When standard dosing regimens were used to achieve a Ctrough target of 10−20 mg/L, a considerable portion of patients with CrCl ≥130

mL/min—ranging from 34% to 100%—failed to reach therapeutic concentrations (Ctrough <10 mg/L) [7,8,10,12,18,20,22–26,31]. In a large prospective study of 363 critically ill patients, Campassi *et al.* [19] reported that even with higher vancomycin doses, no ARC patients achieved target trough levels.

Subtherapeutic vancomycin exposure was also evident in patients with hemorrhagic stroke, traumatic brain injury, and those undergoing neurosurgical procedures [25,29,32]. Studies evaluating AUC24/MIC values confirmed this trend, showing consistently lower drug exposure in ARC patients compared with non-ARC patients. In a retrospective mixed-ICU analysis of 280 vancomycin concentrations, none of the patients reached the target AUC of 400 mg·h/L. Moreover, those with ARC demonstrated a substantially lower mean AUC (232.9 mg·h/L) than non-ARC patients (316 mg·h/L) [24].

Table 1. Overview of vancomycin PK/PD indices in patients with ARC									
Population	Age (years)	CrCl	Maintenance Dose	Ctrough (mg/L)	Ctrough <10 mg/L (%)	AUC24 (mg·h/L)	Vd (L)	VCM CL (L/h)	Reference
Mixed ICU	69 (59– 75)	160.3 (144.2– 199.9) mL/min	14.7 (13.0– 18.2) mg/kg	NR	NR	240 (209– 300)	NR	NR	Ishigo et al. [27]
Mixed ICU	69 (50– 73)	171.6 (157.5– 203.0) mL/min	34.2 (28.3– 42.1) mg/kg	9.4 (5.9– 11.9)	NR	NR	NR	NR	Mikami <i>et al.</i> [11]
Mixed ICU	BD: 44.0 ± 16.6 TDS: 42.9 ± 11.8	BD: 166.9 ± 41.3 mL/min TDS: 171.8 ± 48.6 mL/min	15 mg/kg	BD: 5.6 ± 1.9 TDS: 14.0 ± 3.0	NR	BD: 397.9 ± 76.0 TDS: 611.9 ± 148.0	BD: 44.4 ± 14.2 TDS: 41.9 ± 27.3	BD: 6.0 ± 1.5 TDS: 5.7 ± 1.9	Sahraei <i>et</i> al. [12]
ICU & non- ICU	50.9 ± 15.1	141.2 ± 16.0 mL/min	30.3 ± 6.4 mg/kg	7.1 ± 2.9	80	JPKD: 307.4 ± 72.4 SDose: 376.6 ± 103.4	JPKD: 72.6 ± 10.3 SDose: 44.6 ± 6.7	NR	Yu <i>et al.</i> [8]
ICU & non- ICU	50 (33– 60)	159 (144– 193) mL/min	2 g/day	7.1 (3.9– 10.6)	71.6	253.8– 475.0	NR	NR	Zhao <i>et al</i> . [26]
ICU	33 (26– 46)	168.4 (148.5– 193.2) mL/min	$1.28 \pm 0.52 \text{ g}$	6.45 (3.72– 8.64)	80.8	NR	NR	NR	Chen <i>et al</i> . [25]
Hospitalized	45 (33– 57.3)	180.5 (152.9– 207.4) mL/min	1000 mg q12h	6.8 (3.5– 13.3)	>60	NR	NR	NR	Chu <i>et al</i> . [18]
Hospitalized	45 (33– 57.3)	175.9 (142.2– 198.1) mL/min	1000–4000 mg/day q6– 12h	NR	NR	NR	155.4	8.5	Chu <i>et al</i> . [28]
Mixed ICU	40.0 ± 11.0	180.8 ± 59.3 mL/min	$\begin{array}{c} 29.0 \pm 9.4 \\ mg/kg \end{array}$	6.5 ± 3.8	77.7	232.9 ± 93.6	69.3 ± 9.1	9.7 ± 3.4	He <i>et al</i> . [24]

ICH & aSAH	63.3 ± 13.3	161.6 ± 16.7 mL/min	15.1 ± 4.2 mg/kg q8h (8–12h)	12.0 ± 3.6	NR	NR	71.8 ± 11.3	NR	Morbitzer et al. [29]
Adult patients	43.8 ± 15.9	187.7 ± 50.0 mL/min	1000 mg q8h	NR	62.9	NR	NR	NR	Chu <i>et al</i> . [31]
Mixed ICU	57.5 (39.0– 69.3)	157.4 (142.1– 173.9) mL/min	35.7 (30.5– 40.0) mg/kg	7.4 (5.2– 11.6)	NR	447 (400– 554)	133 (112– 147)	5.3 (4.9– 6.0)	Hirai <i>et al</i> . [10]
Mixed ICU	48 ± 15	155 ± 33 mL/min 150.5	30 mg/kg	NR	100	NR	NR	NR	Campassi et al. [19]
ICU & non- ICU	45.5 (21–66)	(42); 131– 324 mL/min	<15, 15–30, >30 mg/kg	NS	31.8	NR	NR	NR	Minkute <i>et al.</i> [23]
ICU	41 (32– 56)	158.9 (140.9– 193.6) mL/min	30 (25.0–32.3) mg/kg	D1: 14 D3: 20	D1: 98.2 D3: 48	NR	NR	NR	Baptista et al. [22]

Data are presented either as medians with interquartile ranges or as means accompanied by standard deviations (SD). *Creatinine clearance (CrCl) values are expressed in mL/min/1.73 m², and **maintenance doses are listed in mg/kg/day unless otherwise noted. Abbreviations: aSAH, aneurysmal subarachnoid hemorrhage; AUC24, area under the plasma concentration-time curve within 24 hours; BD, twice-daily dosing; CL, clearance; CrCl, creatinine clearance; Ctrough, trough concentration; D, day; ICH, intracerebral hemorrhage; ICU, intensive care unit; JPKD, JavaPK for Desktop; NR, not reported; q, dosing interval; SDose, SmartDose; TDS, three times daily; Vd, volume of distribution; VCM, vancomycin. In a randomized clinical investigation by Sahrai et al. [12], vancomycin dosing strategies—15 administered every 8 hours versus every 12 hours—were

compared among critically ill patients exhibiting augmented renal clearance. The study demonstrated that a significantly greater proportion of patients in the 8-hour group achieved the target AUC/MIC ratio (82.14%) compared with those receiving the 12-hour regimen (46.42%). Collectively, the body of literature reviewed indicates that conventional vancomycin dosing schemes are frequently inadequate in the presence of augmented renal clearance, as accelerated drug elimination leads to subtherapeutic plasma concentrations. Adjustments involving higher total daily doses or shorter dosing intervals appear necessary to attain therapeutic exposure, though only a limited number of studies have provided concrete dosing guidance for this patient group [12, 24, 30] (Table 2).

Table 2. Prop	Table 2. Proposed vancomycin dosing recommendations in patients with ARC							
CrCl (mL/min)	Dosage Regimen	PTA (%)	PD Target	Based on	Reference			
120–149	1750 mg q24h	62.33	AUC24 400–650 mg·h/L	PopPK study (Model-based Monte Carlo Simulations)	Zhao et al. [30]			
150-179	1000 mg q12h	62.56						
≥180	750 mg q8h	61.69						
≥130	46 mg/kg/day	_	Ctrough > 10 mg/L	PopPK study (Bayesian estimation)	He et al. [24]			
	69 mg/kg/day *	_	Ctrough > 15 mg/L *					
≥130	15 mg/kg q8h	_	AUC/MIC > 400	RCT	Sahraei <i>et al</i> . [12]			

^{*} In severe cases. CrCl, creatinine clearance; PopPK, population pharmacokinetics; PTA, probability of target attainment; RCT, randomized clinical study; q, dose frequency.

Discussion

The collective evidence from the reviewed studies indicates that patients exhibiting augmented renal clearance (ARC) often require higher doses of vancomycin to attain optimal therapeutic exposure. This is primarily due to accelerated drug elimination, which compromises serum concentrations and, consequently, treatment efficacy.

Importance of creatinine clearance (CrCl) in vancomycin dosing and ARC identification

Achieving effective antimicrobial therapy in critically ill patients hinges on the optimization of dosing regimens—closely linked to accurate assessment of drug clearance. For vancomycin, renal function, typically represented by creatinine clearance (CrCl), is a key determinant of dosing requirements [33]. CrCl represents the rate at which creatinine, an endogenous marker of renal filtration, is

cleared from plasma and is used as a surrogate measure of glomerular filtration rate (GFR). It can be determined directly from timed urine collections or estimated indirectly using serum creatinine (SCr)—based equations, such as Cockcroft—Gault (CG) or the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula, with the latter approach being more common in clinical settings [34].

Although no universally accepted normal range for CrCl exists, values exceeding 130 mL/min/1.73 m² are widely used to define ARC, as such elevations have been consistently linked to reduced antimicrobial exposure [35]. Reports suggest that ARC occurs in roughly 30–65% of intensive care unit (ICU) patients—figures comparable to those found in the studies reviewed. Discrepancies in reported prevalence rates may be attributed to inconsistent definitions, differing CrCl measurement techniques, and variation in study populations [6].

Since CrCl-estimating equations incorporate variables such as age, sex, and body surface area alongside SCr, they offer a more comprehensive assessment than SCr alone. However, in critically ill populations, these formulas often correlate poorly with measured CrCl due to fluctuating SCr levels and rapidly changing physiology [36]. Derived through regression modeling in stable populations, these equations have limited validity when applied to the dynamic context of the ICU, where SCr concentrations may not accurately reflect true renal function [34].

Several recent investigations have compared estimated CrCl values obtained via the CG equation with directly measured urinary CrCl, often collected over 8-hour periods. Across multiple studies, measured CrCl values consistently exceeded those estimated by equations, highlighting substantial underestimation of renal clearance when relying solely on SCr-based methods [11,19,26,29]. Campassi et al. reported that estimated CrCl using CG exhibited only 39% sensitivity in detecting ARC [19]. Similarly, Zhao et al. conducted a multicenter study showing that CG-based CrCl had limited predictive accuracy for vancomycin pharmacokinetic/pharmacodynamic (PK/PD) indices, correctly estimating target Ctrough and AUC24/MIC values in only 69.1% and 62.6% of cases, respectively [26]. These findings underscore the high interpatient variability in vancomycin exposure among ICU patients and the limitations of formula-based estimations [15].

Taken together, the evidence clearly favors direct measurement of CrCl over estimation methods for assessing renal function in critically ill patients. Among the various urine collection intervals, the 8-hour measurement has shown the highest reliability. Therefore, routine incorporation of measured CrCl into clinical decision-making is recommended, alongside the use of complementary screening tools such as the ARCTIC and

ARC risk scores, both of which demonstrate superior sensitivity and specificity for identifying patients at risk of ARC upon ICU admission [26].

Risk factors associated with ARC

Across the reviewed literature, younger age (typically <50 years) consistently emerged as the most influential determinant of augmented renal clearance (ARC) [6,20,26]. Younger individuals often display better less baseline organ function and physiological deterioration, which collectively contribute to higher glomerular filtration rates. Furthermore, the natural decline in renal function with aging reinforces this agerelated distinction. As such, individualized dose adjustments should be carefully considered in younger, physiologically robust patients to minimize the likelihood of subtherapeutic antimicrobial exposure.

Increased body weight has also been repeatedly identified as a contributing factor to ARC [8,18,25,26]. Excess weight can influence several hemodynamic parameters—particularly cardiac output and renal perfusion—which, in turn, accelerate drug clearance [37]. Given the growing prevalence of obesity as a global health concern, this factor warrants close attention in designing dosing regimens for vancomycin, especially among critically ill patients with ARC [26].

ARC has additionally been reported with greater frequency among neurocritical populations, including patients suffering from traumatic brain injury (TBI) [10,32,36], recent trauma [6], intracranial infections [36], hemorrhagic stroke, and those undergoing neurosurgical procedures [29,32]. Although the precise mechanisms underlying this association remain uncertain, proposed explanations include activation of the systemic inflammatory response syndrome (SIRS), disruption of cerebral autoregulation, and elevated circulating levels of atrial natriuretic peptide (ANP)—a cardiac hormone commonly observed in TBI patients [6,36]. These physiological responses may lead to hyperdynamic circulation and increased renal filtration. Further investigations are required to clarify the neuro-renal interactions that contribute to the development of ARC in this subset of critically ill patients.

Considerations for vancomycin dosing

Selecting an appropriate vancomycin dosing regimen depends on pharmacokinetic/pharmacodynamic (PK/PD) parameters—most notably, the ratio of the 24-hour area under the concentration-time curve to the minimum inhibitory concentration (AUC₄₂₄/MIC). Since vancomycin's bactericidal activity is time-dependent, maintaining concentrations above the MIC for a sufficient duration is essential for optimal therapeutic effect [36]. The efficacy threshold is generally defined as an AUC₄₂₄/MIC ratio of at least 400 mg·h/L [38].

In patients with normal renal function, guidelines recommend an intravenous loading dose of 25–30 mg/kg, followed by maintenance doses of 15–20 mg/kg every 12 hours to reach therapeutic concentrations promptly [15]. However, these conventional regimens often prove inadequate for patients with ARC, where enhanced renal clearance results in subtherapeutic drug levels. Persistently low concentrations not only diminish clinical efficacy but may also foster the development of methicillin-resistant *Staphylococcus aureus* (MRSA) resistance, highlighting the essential role of therapeutic drug monitoring (TDM) to optimize vancomycin therapy while minimizing nephrotoxicity [38].

Earlier recommendations from the Infectious Diseases

Society of America (IDSA) advised targeting vancomycin

trough concentrations between 15-20 mg/L for severe MRSA infections and 10-15 mg/L for less severe cases to achieve the AUC/MIC goal of \geq 400 mg·h/L [15]. However, subsequent evidence has demonstrated that trough-based monitoring correlates poorly with true AUC values because trough levels do not account for the distribution phase, which is influenced by individual variations in volume of distribution (Vd). Consequently, recent IDSA guidelines now endorse AUC-guided monitoring as a more precise approach to dosing. The recommended therapeutic window is an AUC24/MIC ratio of 400–600 mg·h/L, assuming an MIC of 1 mg/L [15]. Two principal methods are currently proposed for estimating AUC-guided dosing. The first relies on firstorder pharmacokinetic equations using two plasma concentrations—one obtained 1-2 hours post-infusion and the other immediately before the next dose. The second employs Bayesian-based modeling that integrates one or two measured concentrations (including at least one trough value) within a population pharmacokinetic framework [15]. Several of the reviewed studies—such as those by Zhao et al. [30], Chu et al. [28], and Yu et al. [8]—supported the application of Bayesian or population pharmacokinetic (PopPK) modeling to tailor vancomycin

time-sensitive phase of MRSA management [27]. Vancomycin kinetics are most accurately represented by a two-compartment model, which accounts for both distribution and elimination phases and provides better prediction of plasma concentrations [39]. This model was adopted in several included studies [24,30]. In contrast, some retrospective investigations used a simplified one-compartment model, primarily due to limited TDM data and mathematical convenience [26,28,32]. Nonetheless, this simplification can introduce substantial bias in AUC estimation because it neglects the distribution phase,

therapy based on patient-specific covariates like age, body

weight, and SCr levels. Moreover, early initiation of TDM,

ideally within the first 48 hours of therapy, has been

advocated to ensure timely optimization of dosing in this

potentially leading to inappropriate dosing decisions and suboptimal therapeutic outcomes [40]. Future pharmacokinetic research should therefore assess the validity of one-compartment modeling in predicting vancomycin exposure, particularly in complex clinical populations such as those with ARC.

Implications of ARC for vancomycin pharmacokinetics and pharmacodynamics

AUC₄₂₄/MIC and trough concentration

Although recent guidelines emphasize AUC-guided vancomycin dosing, many clinical settings still rely on steady-state trough concentrations (Ctrough,ss) due to practical limitations, such as the difficulty of obtaining multiple plasma samples and suboptimal timing of sample collection [41]. Consequently, older studies primarily evaluated the influence of ARC on vancomycin trough concentrations rather than AUC424/MIC ratios. Both approaches, however, demonstrate a consistent inverse relationship between creatinine clearance (CrCl) and vancomycin exposure. In patients with ARC, conventional vancomycin dosing frequently fails to achieve target PK/PD indices, with some studies reporting persistently subtherapeutic trough levels below 10 mg/L, even after increasing doses [10,19,26]. At the same time, clinicians must remain vigilant regarding the risk of nephrotoxicity, particularly acute kidney injury (AKI), when adjusting dosages to counteract ARC [42].

Clearance, Half-Life, and volume of distribution
Low serum creatinine (SCr) levels have been consistently identified as a marker for ARC [7,24,31]. A recent investigation in China demonstrated a strong correlation between SCr and vancomycin clearance, highlighting that dynamic changes in renal function during therapy can significantly affect drug elimination [8]. Patients with ARC often present with reduced SCr due to increased CrCl, resulting in faster vancomycin clearance, shorter half-life, lower AUC, and subtherapeutic serum concentrations relative to patients with normal renal function. Population pharmacokinetic studies further confirm this pattern, showing that vancomycin clearance can be 1.3 to 3.5 times higher in ARC patients compared to those without ARC [8,24,28,30].

Additionally, critically ill patients often exhibit a larger volume of distribution (Vd) for hydrophilic drugs, potentially caused by hyperdynamic circulation and increased organ perfusion. Some studies have reported more than a threefold increase in the central Vd among ICU patients compared with non-ICU populations [28,30]. While the clinical relevance of this increase for vancomycin dosing is less clear—since AUC primarily depends on clearance at steady state—enhanced distribution may facilitate drug penetration into tissues that were previously less accessible. This property can be

strategically exploited to optimize loading doses, improving early drug exposure in ARC patients [30]. Overall, understanding the PK/PD alterations caused by ARC is crucial to achieving effective vancomycin therapy and improving patient outcomes.

Strategies for vancomycin dosing in ARC patients In critically ill patients with ARC, achieving therapeutic vancomycin concentrations promptly is essential to prevent subtherapeutic exposure and potential treatment failure. A recent retrospective study of 141 ICU patients assessed AUC on days 1 and 2, as well as at steady state, using probability of target attainment (PTA) via Bayesian estimation [27]. The findings demonstrated that initial AUC values were often lower than the AUC observed at TDM, underscoring the importance of early therapeutic drug monitoring to adjust individual dosing and ensure sufficient exposure while avoiding overdosing.

Given the high prevalence of ARC in ICU populations, routine screening is recommended. While existing scoring systems provide initial guidance, additional risk factors such as traumatic brain injury, subarachnoid hemorrhage, and recent neurosurgical interventions-should be considered when assessing the likelihood of ARC. For high-risk patients, an 8-hour urine collection to directly measure CrCl is advised. Patients with measured CrCl ≥130 mL/min should receive increased vancomycin doses to achieve comparable drug exposure during initial therapy. Current literature supports the use of a loading dose of approximately 30 mg/kg in critically ill ARC patients, although caution is warranted when exceeding 3 grams, as higher doses may elevate the risk of nephrotoxicity [43]. Early dose optimization combined with AUC-guided monitoring is essential for maximizing vancomycin efficacy in this vulnerable patient population. review further suggests that maintenance vancomycin doses of 15-20 mg/kg every eight hours may be appropriate for patients with ARC. However, caution is advised when total daily doses exceed 4 grams to minimize the risk of adverse effects. Individualized dosing, guided by therapeutic drug monitoring (TDM), is recommended to adjust doses according to measured creatinine clearance (CrCl).

Several limitations should be considered when interpreting the findings of this review. Conducting research in the ICU setting is inherently challenging due to high patient mortality rates and rapidly changing clinical conditions. Consequently, most of the studies included were single-center observational investigations, resulting in limited high-quality evidence. There is a clear need for multicenter prospective studies with larger patient populations to establish more robust dosing strategies for vancomycin in ARC patients. Additionally, the literature search was restricted to only two databases, which may have excluded relevant studies and led to incomplete

capture of the available evidence. Despite these limitations, this review provides valuable insights into the characteristics of ARC and its impact on vancomycin therapy, offering a useful resource for clinicians and researchers aiming to optimize treatment strategies and guiding directions for future investigations.

Augmented renal clearance substantially influences vancomycin pharmacokinetics and pharmacodynamics, making a multifaceted approach essential for achieving therapeutic success. In critical infections such as sepsis, even a one-hour delay in antibiotic administration can increase mortality by approximately 9% [44]. Accordingly, understanding ARC and its effects on vancomycin disposition is critical for developing effective dosing regimens in critically ill adult patients. Tailoring therapy based on individual patient characteristics, particularly renal function, is necessary to maximize efficacy while minimizing the risk of toxicity.

Conclusion

review This synthesizes current knowledge vancomycin therapy in ICU patients with ARC and highlights key areas requiring further investigation. The consistent evidence supporting upward dose adjustments emphasizes the need for standardized dosing guidelines tailored to this population. Given the frequent occurrence of subtherapeutic vancomycin concentrations in ARC patients, early and accurate assessment of renal function is essential for optimal management. As future multicenter interventional studies provide more comprehensive data, coordinated efforts between clinicians and researchers will be crucial for establishing evidence-based, individualized vancomycin dosing protocols for critically ill patients experiencing ARC.

Acknowledgments: The authors would like to express their sincere gratitude to Janice Kung, the librarian, for her assistance in the keyword selection and the literature search. Her expertise and guidance were instrumental in the success of this review.

Conflict of interest: None.

Financial support: None.

Ethics statement: None.

References

- Maki DG, Crnich CJ, Safdar N. Nosocomial infection in the intensive care unit. In: Critical Care Medicine. Amsterdam: Elsevier; 2008. p. 1003–69.
- 2. Wicha SG, Märtson A, Nielsen EI, Koch BCP, Friberg LE, Alffenaar J, et al. From therapeutic drug

- monitoring to model-informed precision dosing for antibiotics. Clin Pharmacol Ther. 2021;109:928–41.
- Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect Dis. 2014;14:498–509.
- Jamal JA, Roger C, Roberts JA. Understanding the impact of pathophysiological alterations during critical illness on drug pharmacokinetics. Anaesth Crit Care Pain Med. 2018;37:515–7.
- Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, et al. Subtherapeutic initial β-lactam concentrations in select critically ill patients. Chest. 2012;142:30–9.
- 6. Mahmoud S, Shen C. Augmented renal clearance in critical illness: An important consideration in drug dosing. Pharmaceutics. 2017;9:36.
- Baptista JP, Roberts JA, Sousa E, Freitas R, Deveza N, Pimentel J. Decreasing the time to achieve therapeutic vancomycin concentrations in critically ill patients: Developing and testing of a dosing nomogram. Crit Care. 2014;18:654.
- 8. Yu YX, Lu J, Lu H, Li L, Li JJ, Shi L, et al. Predictive performance of reported vancomycin population pharmacokinetic model in patients with different renal function status, especially those with augmented renal clearance. Eur J Hosp Pharm Sci Pract. 2022;29:e6–e14.
- Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis. 2006;42:S35–9.
- Hirai K, Ishii H, Shimoshikiryo T, Shimomura T, Tsuji D, Inoue K, et al. Augmented renal clearance in patients with febrile neutropenia is associated with increased risk for subtherapeutic concentrations of vancomycin. Ther Drug Monit. 2016;38:706–10.
- Mikami R, Imai S, Hayakawa M, Sugawara M, Takekuma Y. Clinical applicability of urinary creatinine clearance for determining the initial dose of vancomycin in critically ill patients. J Infect Chemother. 2022;28:199–205.
- Sahraei Z, Saffaei A, Alavi Darazam I, Salamzadeh J, Shabani M, Shokouhi S, et al. Evaluation of vancomycin pharmacokinetics in patients with augmented renal clearances: A randomized clinical trial. Front Pharmacol. 2022;13:1041152.
- Šíma M, Hartinger J, Cikánková T, Slanař O. Importance of vancomycin loading doses in intermittent infusion regimens. J Infect Chemother. 2018;24:247–50.
- Mejías-Trueba M, Alonso-Moreno M, Gutiérrez-Valencia A, Herrera-Hidalgo L, Guisado-Gil AB, Jiménez-Parrilla F, et al. Association between

- vancomycin pharmacokinetic parameters and clinical and microbiological efficacy in a cohort of neonatal patients. Antimicrob Agents Chemother. 2022;66:e01109-22.
- 15. Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review. Am J Health Syst Pharm. 2020;77:835–64.
- Sunder S, Jayaraman R, Mahapatra HS, Sathi S, Ramanan V, Kanchi P, et al. Estimation of renal function in the intensive care unit: The covert concepts brought to light. J Intensive Care. 2014;2:31.
- John G, Heffner E, Carter T, Beckham R, Smith N. Augmented renal clearance in patients with acute ischemic stroke: A prospective observational study. Neurocrit Care. 2023;38:35–40.
- Chu Y, Luo Y, Jiang M, Zhou B. Application of vancomycin in patients with augmented renal clearance. Eur J Hosp Pharm Sci Pract. 2020;27:276– 9.
- Campassi ML, Gonzalez MC, Masevicius FD, Vazquez AR, Moseinco M, Navarro NC, et al. Augmented renal clearance in critically ill patients: Incidence, associated factors and effects on vancomycin treatment. Rev Bras Ter Intensiva. 2014;26:13–20.
- Ishii H, Hirai K, Sugiyama K, Nakatani E, Kimura M, Itoh K. Validation of a nomogram for achieving target trough concentration of vancomycin: Accuracy in patients with augmented renal function. Ther Drug Monit. 2018;40:693–8.
- 21. Morbitzer K, Jordan D, Sullivan K, Durr E, Olm-Shipman C, Rhoney D. Enhanced renal clearance and impact on vancomycin trough concentration in patients with hemorrhagic stroke. Pharmacotherapy. 2016;36:e218.
- 22. Baptista JP, Sousa E, Martins PJ, Pimentel JM. Augmented renal clearance in septic patients and implications for vancomycin optimisation. Int J Antimicrob Agents. 2012;39:420–3.
- Minkute R, Briedis V, Steponaviciute R, Vitkauskiene A, Maciulaitis R. Augmented renal clearance—An evolving risk factor to consider during the treatment with vancomycin. J Clin Pharm Ther. 2013;38:462–7.
- 24. He J, Yang ZT, Qian X, Zhao B, Mao EQ, Chen EZ, et al. A higher dose of vancomycin is needed in critically ill patients with augmented renal clearance. Transl Androl Urol. 2020;9:2166–71.
- 25. Chen Y, Liu L, Zhu M. Effect of augmented renal clearance on the therapeutic drug monitoring of

- vancomycin in patients after neurosurgery. J Int Med Res. 2020;48:300060520949076.
- 26. Zhao J, Fan Y, Yang M, Liang X, Wu J, Chen Y, et al. Association between augmented renal clearance and inadequate vancomycin pharmacokinetic/pharmacodynamic targets in Chinese adult patients: A prospective observational study. Antibiotics. 2022;11:837.
- 27. Ishigo T, Ibe Y, Fujii S, Kazuma S, Aigami T, Kashiwagi Y, et al. Effect of renal clearance on vancomycin area under the concentration-time curve deviations in critically ill patients. J Infect Chemother. 2023;29:769–77.
- Chu Y, Luo Y, Ji S, Jiang M, Zhou B. Population pharmacokinetics of vancomycin in Chinese patients with augmented renal clearance. J Infect Public Health. 2020;13:68–74.
- Morbitzer KA, Rhoney DH, Dehne KA, Jordan JD. Enhanced renal clearance and impact on vancomycin pharmacokinetic parameters in patients with hemorrhagic stroke. J Intensive Care. 2019;7:51.
- Zhao S, He N, Zhang Y, Wang C, Zhai S, Zhang C. Population pharmacokinetic modeling and dose optimization of vancomycin in Chinese patients with augmented renal clearance. Antibiotics. 2021;10:1238.
- 31. Chu Y, Luo Y, Qu L, Zhao C, Jiang M. Application of vancomycin in patients with varying renal function, especially those with augmented renal clearance. Pharm Biol. 2016;54:2802–6.
- 32. Nelson NR, Morbitzer KA, Jordan JD, Rhoney DH. The impact of capping creatinine clearance on achieving therapeutic vancomycin concentrations in neurocritically ill patients with traumatic brain injury. Neurocrit Care. 2019;30:126–31.
- 33. Roberts DM. The relevance of drug clearance to antibiotic dosing in critically ill patients. Curr Pharm Biotechnol. 2011;12:2002–14.
- Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function—Measured and estimated glomerular filtration rate. N Engl J Med. 2006;354:2473–83.
- Bilbao-Meseguer I, Rodriguez-Gascon A, Barrasa H, Isla A, Solinis MA. Augmented renal clearance in critically ill patients: A systematic review. Clin Pharmacokinet. 2018;57:1107–21.

- Hobbs ALV, Shea KM, Roberts KM, Daley MJ. Implications of augmented renal clearance on drug dosing in critically ill patients: A focus on antibiotics. Pharmacotherapy. 2015;35:1063–75.
- Smit C, De Hoogd S, Brüggemann RJM, Knibbe CAJ. Obesity and drug pharmacology: A review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters. Expert Opin Drug Metab Toxicol. 2018;14:275–85.
- 38. Rybak M, Lomaestro B, Rotschafer JC, Moellering R, Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: A consensus review. Am J Health Syst Pharm. 2009;66:82–98.
- Mulla H, Pooboni S. Population pharmacokinetics of vancomycin in patients receiving extracorporeal membrane oxygenation. Br J Clin Pharmacol. 2005;60:265–75.
- 40. Shingde RV, Graham GG, Reuter SE, Carland JE, Day RO, Stocker SL. Comparison of the area under the curve for vancomycin estimated using compartmental and noncompartmental methods in adult patients with normal renal function. Ther Drug Monit. 2019;41:726–31.
- 41. Reuter SE, Stocker SL, Alffenaar JWC, Baldelli S, Cattaneo D, Jones G, et al. Optimal practice for vancomycin therapeutic drug monitoring: Position statement from the Anti-Infectives Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit. 2022;44:121–32.
- 42. Kim B, Hwang S, Heo E, Kim H, Jung J, Kim ES, et al. Evaluation of vancomycin TDM strategies: Prediction and prevention of kidney injuries based on vancomycin TDM results. J Korean Med Sci. 2023;38:e101.
- 43. Matsumoto K, Oda K, Shoji K, Hanai Y, Takahashi Y, Fujii S, et al. Clinical practice guidelines for therapeutic drug monitoring of vancomycin in the framework of model-informed precision dosing: A consensus review. Pharmaceutics. 2022;14:489.
- 44. Liu VX, Fielding-Singh V, Greene JD, Baker JM, Iwashyna TJ, Bhattacharya J, Escobar GJ. The timing of early antibiotics and hospital mortality in sepsis. Am J Respir Crit Care Med. 2017;196:856–63.