Bulletin of
Pioneering
Researches of
Medical and
Clinical Science

Bulletin of Pioneering Researches of Medical and Clinical Science

Available online: https://bprmcs.com
2025 | Volume 5 | Issue 2 | Page: 51-62

Potential of Limosilactobacillus-Linked 3-OMDP as a
Treatment Target in Depression

Qi Zhong!, Wentao Wu!, Jing Xie?, Jiao-lin Wang', Ke Xu**, Yi Ren**, Jianjun Chen!, Peng
Xie3*

!Institute of Neuroscience, School of Basic Medical Sciences, Chongging Medical University, Chongqing, China.
2 Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, China.
3 Department of Neurology, The First Affiliated Hospital of Chongging Medical University, Chongging, China.
4National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First
Affiliated Hospital of Chongqing Medical University, Chongging, China.

Abstract

Although the gut microbiota has been strongly implicated in the development of depression, its  Keywords: Depression,
precise molecular mechanisms are still poorly understood. This study aimed to clarify the pflammation, Gut microbiota,
relationship between gut microbial alterations, fluctuations in neurotransmitters, and Neyrotransmitters

inflammatory responses in a murine model of depression. A chronic social defeat stress (CSDS)

paradigm was used to induce depressive-like states. Fecal samples were analyzed for microbial

composition and neurotransmitter levels, while neurotransmitters were also assessed in colon

tissue, blood, and hippocampus. Inflammatory mediators were quantified in the hippocampus.  Corresponding author: Peng Xie
After identifying a key neurotransmitter of interest, an intervention study was conducted to  E-mail: xiepeng@cqmu.edu.cn
investigate its therapeutic potential in mitigating depressive symptoms. The analysis revealed

that six gut microbial genera differed between groups, fourteen neurotransmitters altered along

the gut-brain axis, and two hippocampal cytokines—interleukin-1f (IL-1f) and interleukin-6

(IL-6)—with significant changes in the depressed mice. Strong correlations emerged between

altered microbial taxa, neurotransmitter profiles, and the expression of IL-1f and IL-6. Notably,

3-O-Methyldopa (3-OMDP) showed consistent decreases in feces, colon, circulation, and

hippocampus, and was closely associated with Limosilactobacillus abundance and IL-1f levels.

3-OMDP administration alleviated depressive-like behaviors and normalized hippocampal IL-

1B and IL-6 levels. The findings suggest that gut microbes may influence neuroinflammation

through neurotransmitter modulation, thereby contributing to depressive pathophysiology. A  Received: 06 May 2025

potential mechanistic route, the Limosilactobacillus—3-OMDP-IL-1p/IL-6 axis, was identified, ~Revised: 28 August 2025

with 3-OMDP showing therapeutic promise for the treatment of depression. Accepted: 03 September 2025
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characterized by persistent sadness, lack of interest, sleep

Introduction disturbances, and, in severe cases, suicidal thoughts [3].

Globally, depression ranks as the fourth most common
Depression is a prevalent mood disorder that significantly disorder, affecting over 350 million individuals, with the
impacts both mental and physical well-being [1, 2]. It is incidence steadily rising [4]. Despite notable
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advancements in understanding the causes and treatment
options for depression over recent decades, the precise
mechanisms underlying the disorder remain largely
elusive [5, 6]. This knowledge gap poses substantial
obstacles for effective prevention and therapeutic
interventions, highlighting the urgent need to uncover
novel pathological mechanisms to inform better treatment
strategies.

The human gut hosts nearly 100 trillion microorganisms
that play crucial roles in host physiology, including
digestion, immune regulation, and neurotransmitter
production [7-9]. Increasing evidence points to gut
microbiota as a critical contributor to depression [10-12].
Our prior studies demonstrated that individuals with
depression exhibit distinct gut microbial profiles
compared to healthy controls [13—16], which aligns with
findings from other research groups [17, 18]. Typically,
individuals with depression exhibit reduced microbial
diversity and an increased abundance of pathogenic
bacteria [19, 20]. Dysbiosis can compromise intestinal
barrier integrity, trigger inflammatory responses, and
potentially contribute to depression onset and progression
[21, 22]. Furthermore, recent studies in mice suggest that
gut-derived metabolites can influence brain activity and
anxiety-like behaviors [23, 24]. Nevertheless, the precise
mechanisms by which gut microbiota interacts with
depressive pathology remain to be elucidated.

Gut microbes produce a variety of metabolites, including
short-chain ~ fatty  acids, neurotransmitters, and
inflammatory mediators [25, 26], all of which are
implicated in neuropsychiatric disorders such as
depression [13, 27]. Neurotransmitters, in particular, are
essential for maintaining cerebral chemical balance [28,
29]. Previous work by our group has found altered levels
of specific neurotransmitters, such as tryptophan and
tyrosine, in depressed mice [23, 30, 31]. Morais et al. [32]
have reported that gut microbiota communicates with the
brain via neurotransmitters and inflammatory molecules
through the so-called “gut-brain axis”. Moreover, gut
microbial composition can influence central nervous
system (CNS) physiology and neuroinflammation [33,
34], suggesting a complex interplay between microbiota,
neurotransmission, inflammation, and the development of
depression.

In this study, we further investigated the interplay between
gut microbiota and depression using a chronic social
defeat stress (CSDS) mouse model. Neurotransmitter
levels were assessed along the gut-brain axis, including
feces, colon, blood, and hippocampus, while four
hippocampal inflammatory factors were also measured.
Our focus was on neurotransmitters involved in
GABAergic and catecholaminergic pathways. By
integrating microbial, neurotransmitter, and inflammatory
data, we aimed to elucidate how gut microbiota may

Bull Pioneer Res Med Clin Sci, 2025, 5(2):61-62

contribute to depressive pathology. Furthermore, upon
identifying a critical neurotransmitter, we conducted an
intervention study to assess its potential to mitigate
depressive-like behaviors, providing new insights into
depression pathogenesis and therapeutic strategies.

Methods and Materials

Ethics statement

This study was designed, executed, and reported in
compliance with the Animal Research: Reporting of In
Vivo  Experiments (ARRIVE) guidelines.  All
experimental protocols were reviewed and approved by
the Ethics Committee of Chongqing Medical University
(Chongqing, China; approval number: 2017013). Male
C57BL/6J mice, aged 7-8 weeks, were sourced from
ENSIWEIER Laboratory Animal Co., Ltd. (Chongqing,
China). Retired CD1 breeders (7 months old, 30-35 g)
were obtained from Vital River Laboratory Animal
Technology Co., Ltd. (Beijing, China). All animals were
maintained following the Animal Welfare Act and the
Guide for the Care and Use of Laboratory Animals: Eighth
Edition. At the study’s conclusion, mice were anesthetized
and cardiac-perfused according to the American
Veterinary Medical Association guidelines.

CSDS depression model construction
To establish a chronic social defeat stress (CSDS) model

of depression, mice were randomly allocated into either
the control (CON) group or the CSDS group, ensuring
comparable body weights and baseline sucrose preference
(SP) between groups. Each group consisted of eight mice,
consistent with our prior studies [23, 30, 31]. Mice in the
CSDS group were exposed daily to different aggressive
CDI1 mice for 5-10 minutes, followed by 24 hours of
sensory contact, over a period of 10 consecutive days.
Control mice were individually housed under standard
laboratory conditions. All animals were maintained in a
controlled environment with a 12-hour light/dark cycle
(lights on at 8:00 am) and had unrestricted access to food
and water.

Following CSDS exposure, behavioral assessments were
performed to validate the depression model. The tests
included: the sucrose preference test (SPT) to measure
anhedonia; the open field test (OFT) to evaluate anxiety-
like and exploratory behaviors, with center distance
(CD%) or center time as indicators; the forced swim test
(FST) and tail suspension test (TST) to assess behavioral
despair, using immobility time as the metric. All
procedures followed the protocols previously described in
our studies [20].

Gut microbiota, neurotransmitters, and
inflammatory factor assessment

52



Zhong et al.

Samples, including feces, colon, blood, and hippocampus,
were collected promptly and stored at —80 °C. Fecal
samples were analyzed gut microbiota
composition, while neurotransmitters in all sample types
were quantified using liquid chromatography—mass
spectrometry (LC-MS), following previously established
protocols [23, 30, 35]. Hippocampal levels of alpha 1-
antitrypsin (AAT), interleukin-1B (IL-1B), interleukin-6
(IL-6), and tumor necrosis factor-a (TNF-0) were
measured using ELISA kits (Jiangsu Meimian Industrial
Co., Ltd). Tissue homogenates were prepared in sterile
phosphate-buffered saline (PBS) at a 1:9 ratio, then
centrifuged at 12,000 rpm for 15 minutes. The resulting
supernatant was collected for analysis, following the
manufacturer’s instructions.

to assess

3-O-Methyldopa (3-OMDP) intervention
3-OMDP  (MedChemExpress, HY-113468A)
dissolved in sterile PBS and administered at a dose of 3
mg/kg/day, based on prior literature [36]. Following the
establishment of the CSDS model, mice in the CSDS
group were divided into two subgroups, matched for body
weight and SP: one received intraperitoneal PBS (n = 8),
and the other received intraperitoneal 3-OMDP (n = 8)
daily for 10 days. Similarly, CON mice were assigned to
PBS or 3-OMDP treatment subgroups (n = 8 each). After
the intervention, behavioral tests were repeated to evaluate
antidepressant effects, and hippocampal inflammatory
markers were measured.

was

Statistical analysis

Group allocation was blinded to all researchers except the
two corresponding authors. Data were analyzed using
SPSS 20.0, Cytoscape 3.10.0, and R 4.0.5. Appropriate
statistical tests included Student’s t-test, non-parametric
tests, and Spearman’s correlation. Multiple testing
corrections were applied using the Benjamini-Hochberg
method. Alpha diversity was evaluated using ACE, Chao,
Simpson, and Shannon indices, while beta diversity was
assessed via principal coordinate analysis (PCoA).
Differential microbial genera were identified using Linear
Discriminant Analysis Effect Size (LEfSe; LDA > 2.0, P
< 0.05). Correlations among behavioral outcomes,
microbial genera, neurotransmitters, and inflammatory
factors were analyzed to explore gut-brain interactions.

Results

Behavioral characteristics in CSDS mice

At baseline, no significant differences were observed in
body weight or SP between CON and CSDS groups. After
10 days of CSDS exposure, mice in the stress group
exhibited clear depressive-like behaviors. Specifically,
CSDS mice had significantly lower body weight and SP
compared to controls (Figure 1). In the FST, CSDS mice
displayed longer immobility times, indicative of
behavioral despair (Figure 1). In the OFT, both the
percentage of center distance (CD%) and the number of
entries into center zones (ET) were reduced in CSDS mice
relative to controls (Figure 1). These findings confirm that
the CSDS procedure effectively induced depressive-like
phenotypes in mice.
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Figure 1. Depressive-like behaviors in CSDS mice. Mice subjected to chronic social defeat stress (CSDS) displayed
pronounced depressive-like phenotypes compared to control (CON) mice. Specifically, CSDS mice exhibited reduced body
weight, lower sucrose consumption, decreased time spent in the center zone, and increased immobility duration. Each

group included eight mice

Differential gut microbiota compositions in CSDS
mice

No significant differences in alpha diversity metrics were
observed between CSDS and CON mice (ACE, P = 0.87;
Chao, P = 0.75; Simpson, P = 0.07; Shannon, P =0.11; n
= 8 per group; Figure 2(A)). At the phylum level,
Firmicutes and Bacteroidetes dominated the fecal
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microbiota in both groups (Figure 2(B)). Despite similar
alpha diversity, overall microbial composition differed
markedly, as revealed by principal coordinate analysis
(PCoA) (Figure 2(C)). Linear discriminant analysis
(LDA) identified taxa driving these differences:
Lactobacillus, Limosilactobacillus, and Acetivibrio were
enriched in CON mice, whereas CSDS mice showed
higher abundances of Phocaeicola, Rodentibacter, and
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Parabacteroides (Figure 2(D)). Correlation analysis
further linked specific bacterial genera to depressive-like
phenotypes: body weight was associated with
Rodentibacter, Phocaeicola, Parabacteroides, and
Limosilactobacillus; center zone activity correlated with
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Figure 2. Alterations in gut microbiota between CON and CSDS mice. Analysis of alpha diversity showed no significant
variation between CON and CSDS groups (Figure 2A). At the phylum level, Firmicutes and Bacteroidetes dominated the
microbial communities in both sets of mice (Figure 2B). Despite similar overall diversity, principal coordinate analysis
(PCoA) revealed clear differences in microbial composition between the groups (Figure 2C). Using LEfSe (LDA > 2.0, P
< 0.05), six bacterial taxa were identified as characteristic of either CON or CSDS mice (Figure 2D). Further correlation
analysis demonstrated strong links between these specific microbes and depressive-like behaviors (Figure 2E). Each group

consisted of eight mice

Neurochemical changes in CSDS mice
Chronic social defeat stress induced significant changes in

neurotransmitter levels across multiple biological
compartments. In fecal samples, CSDS mice exhibited
elevated 3-OMDP, phenylethylamine (PEA), and GABA,
while Ornithine (Orn) and 5-Guanylic acid (5-GMP)
decreased, and 4-Hydroxy-3-methoxymandelic acid
(VMA) was increased (Figure 3A). Colonic analysis
showed lower levels of 3-OMDP, L-aspartic acid (Asp),
and spermine (Spn) in stressed mice compared with

Bull Pioneer Res Med Clin Sci, 2025, 5(2):61-62

controls (Figure 3B). Within the hippocampus, reductions
were observed for 3-OMDP, 5-GMP, norepinephrine
(NE), and 1,4-diaminobutane (Pun) (Figure 3C). Blood
analysis revealed that CSDS mice had decreased
concentrations of 3-OMDP, levodopa (L-DP), dopamine
(DA), GABA, Orn, and glutathione (GSH), accompanied
by increased Asp and L-glutamic acid (Glu) (Figure 3D).
Functionally, 3-OMDP, PEA, VMA, NE, L-DP, and DA
are components of the catecholaminergic pathway,
whereas GABA, Orn, 5-GMP, Asp, Spn, Pun, GSH, and
Glu are associated with GABAergic signaling.
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Figure 3. Alterations in peripheral and central neurotransmitters in CSDS mice: (A) Six neurotransmitters in fecal samples
were identified as significantly altered in CSDS mice, (B) Three neurotransmitters showed differential levels in the colon,
(C) Four neurotransmitters were altered in the hippocampus, and (D) Eight neurotransmitters in the blood exhibited
significant differences compared with controls. Among these changes, 3-OMDP, PEA, VMA, NE, L-DP, and DA are
components of the catecholaminergic pathway, while GABA, Orn, 5-GMP, Asp, Spn, Pun, GSH, and Glu are linked to

GABAergic signaling. Each group consisted of eight mice

Associations between altered gut microbiota and
neurotransmitters

Correlation analyses revealed strong relationships
between six differentially abundant bacterial genera and
14 neurotransmitters across the gut-brain axis, including
feces, colon, blood, and hippocampus (n = 8 per group).
Among the genera, Limosilactobacillus appeared to exert
the strongest influence on these neurotransmitters (Figure
4A). Specifically, blood 3-OMDP levels were
significantly associated with five of the six differential
genera, while Limosilactobacillus showed significant

correlations with 3-OMDP in both blood and hippocampus
(Figure 4A). Further that
peripheral neurotransmitter alterations were closely linked
with central neurotransmitter changes: central 5-GMP,
NE, Pun, and 3-OMDP were significantly associated with
10, 2, 6, and 8 peripheral neurotransmitters, respectively
(Figure 4B). Moreover, all central neurotransmitters
examined showed significant correlations with at least one
measure of depressive-like behavior (Figure 4B). These
findings suggest that interactions between peripheral and
central neurotransmitter systems may play a key role in the
development of depressive-like states.
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Figure 4. Relationships between altered gut microbiota and neurotransmitters. (A) Strong associations were observed
between the differentially abundant bacterial genera and the altered neurotransmitters. Limosilactobacillus exhibited the
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broadest influence, showing correlations with the most significant number of neurotransmitters. Blood levels of 3-OMDP
were significantly associated with five out of the six differential genera. (B) Correlation analysis further demonstrated that
changes in peripheral neurotransmitters could substantially impact central neurotransmitters, particularly 5-GMP and 3-

OMDP. Each group contained eight mice

Altered inflammatory markers in CSDS mice

Four inflammation-related cytokines—AAT, TNF-a, IL-
1B, and IL-6—were measured in the hippocampus. CSDS
mice displayed significantly elevated IL-1f and IL-6
levels compared to CON mice (n = 8 per group; Figure
5A). Although AAT and TNF-a tended to increase, these
changes were not statistically significant. These findings
indicate that CSDS-induced depression is associated with
heightened neuroinflammation. Correlation analysis
revealed negative relationships between
Limosilactobacillus and IL-6, IL-1p, and TNF-a, while IL-

1B showed a positive correlation with Phocaeicola
(Figure 5B). Further investigation into the links between
cytokines and neurotransmitters demonstrated that IL-6
was positively correlated with Glu (r = 0.609, P = 0.047)
and VMA (r=0.657, P =0.020), and negatively with GSH
(r =-0.636, P = 0.035). IL-1pB was positively associated
with VMA (r = 0.72, P = 0.018) and negatively with 3-
OMDP (r =-0.601, P =0.039). Collectively, these results
suggest that disruptions in gut microbiota may contribute
to elevated neuroinflammation through modulation of
both peripheral and central neurotransmitter systems.
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Figure 5. Links between gut microbiota and brain inflammation. CSDS mice exhibited significantly higher hippocampal
levels of IL-1p and IL-6 compared to controls, whereas AAT and TNF-a levels were elevated but not statistically significant
(Figure 5A). Correlation analysis revealed that Phocaeicola was positively associated with IL-1B, while
Limosilactobacillus showed inverse correlations with IL-1B, IL-6, and TNF-a (Figure 5B). Each experimental group

included eight mice

Insights into the gut-brain axis
Throughout the study, 3-OMDP was consistently reduced

in CSDS mice across fecal, colonic, blood, and
hippocampal samples (n = 8 per group; Figure 3).
Sequential  correlations suggested a  directional
relationship along the gut-brain axis: fecal 3-OMDP
correlated with colonic levels (r=0.53, P = 0.04), colonic
levels correlated with blood (r=0.56, P =0.03), and blood
3-OMDP  strongly correlated with  hippocampal
concentrations (r = 0.85, P = 0.00006). This pattern
indicates that gut 3-OMDP may influence central
neurotransmitter levels, positioning it as a critical

Bull Pioneer Res Med Clin Sci, 2025, 5(2):61-62

molecule in depressive pathology. Limosilactobacillus
abundance closely linked with 3-OMDP
concentrations in  both peripheral and central
compartments (Figure 4A). Notably, reductions in 3-
OMDP in the hippocampus were accompanied by elevated
IL-6 and IL-1B, suggesting that decreased
Limosilactobacillus may disrupt 3-OMDP homeostasis,
thereby promoting neuroinflammation and contributing to
depressive-like behavior (Figure 6).

was
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Figure 6. Proposed Limosilactobacillus—3-OMDP-IL-
1B/IL-6 pathway in the gut-brain axis. In CSDS mice,
3-OMDP levels were consistently reduced across feces,
colon, blood, and hippocampus. Correlation analyses
revealed sequential associations: fecal 3-OMDP
correlated with colonic 3-OMDP, colonic 3-OMDP
correlated with blood 3-OMDP, and blood 3-OMDP
correlated with hippocampal 3-OMDP.
Limosilactobacillus abundance was closely linked with
both peripheral and central 3-OMDP, and 3-OMDP
levels were associated with IL-1B. These findings
suggest that Limosilactobacillus may modulate brain
IL-6 and IL-1P levels via effects on peripheral and
central 3-OMDP, ultimately contributing to the
development of depressive-like behaviors

Antidepressant potential of 3-OMDP

To evaluate the therapeutic effects of 3-OMDP, CSDS
mice (n = 8 per group) received intraperitoneal injections
of 3-OMDP, followed by behavioral assessments
including sucrose preference test (SPT), open field test
(OFT), and tail suspension test (TST). After ten days of
treatment, CSDS mice administered 3-OMDP exhibited
significant improvements in depressive-like behaviors
compared with CSDS mice given PBS: sucrose preference
(SP) increased (P = 0.015, Figure 7A), immobility time
(IT) decreased (P = 0.008, Figure 7B), and center zone
activity (CD%) increased (P = 0.043, Figure 7C).
Notably, these measures were comparable to those in
control mice receiving PBS, indicating near-complete
behavioral restoration. Additionally, no significant
differences were observed between CON mice treated
with PBS and CON mice treated with 3-OMDP, whereas
both groups differed significantly from CSDS + PBS mice
(SP: P=0.004; IT: P=0.012; CD%: P =0.014, Figure 7).
Together, these results demonstrate that 3-OMDP

Bull Pioneer Res Med Clin Sci, 2025, 5(2):61-62

administration can effectively ameliorate depressive-like
behaviors in CSDS mice.
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Figure 7. Impact of 3-OMDP on depressive-like
behaviors in CSDS mice. Administration of 3-OMDP
significantly alleviated depressive-like behaviors in
CSDS mice. Specifically, sucrose preference (%) was
markedly increased in CSDS mice treated with 3-
OMDP compared with CSDS mice receiving PBS
(Figure 7A). Immobility time was reduced following 3-
OMDP treatment (Figure 7B), and center zone activity
(%) was elevated (Figure 7C). Behavioral measures in
the CON + PBS group were comparable to those in both
the CON + 3-OMDP and CSDS + 3-OMDP groups.
Still, they differed significantly from the CSDS + PBS
group, demonstrating that 3-OMDP effectively restored
depressive-like behaviors in stressed mice. Each group
included eight mice

Effects of 3-OMDP on hippocampal inflammatory
markers

We further examined the influence of 3-OMDP on
hippocampal levels of IL-1 and IL-6 in CSDS mice (n =
8 per group). Following treatment, CSDS + 3-OMDP mice
exhibited significantly reduced IL-1p (P = 0.035) and IL-
6 (P =0.021) compared with CSDS + PBS mice, while
their cytokine levels were comparable to CON + PBS mice
(Figure 8). Similarly, IL-1f and IL-6 concentrations in the
CON + PBS group were similar to those in the CON + 3-
OMDP group but remained significantly lower than in the
CSDS + PBS mice (P =0.031 and P = 0.049, respectively;

57



Zhong et al.

Figure 8). These findings indicate that 3-OMDP
effectively attenuates elevated hippocampal IL-1f and IL-
6 in CSDS mice.
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Figure 8. Effects of 3-OMDP on hippocampal IL-1
and IL-6 in CSDS mice. Following administration of 3-
OMDP, hippocampal IL-1B and IL-6 levels were
significantly reduced in CSDS mice compared to the
CSDS + PBS group. The CON + PBS group exhibited
cytokine levels similar to both CON + 3-OMDP and
CSDS + 3-OMDP groups. These findings demonstrate
that 3-OMDP can effectively reverse the elevated IL-18
and IL-6 observed in the hippocampus of CSDS mice.
Each group consisted of eight mice

Discussion

This study identified six differential bacterial genera in
feces and fourteen neurotransmitters across the gut-brain
axis that differed between CSDS and control mice.
Additionally, two inflammatory markers, IL-6 and IL-1,
were significantly increased in the hippocampus of CSDS
mice. Notably, 3-OMDP levels were consistently
decreased in both peripheral and central tissues.
Correlation analyses revealed that Limosilactobacillus
was strongly associated with 3-OMDP as well as IL-6 and
IL-1p levels. Previous studies have suggested that chronic
stress-induced alterations in neurotransmitter systems and
inflammatory responses contribute to depression [37, 38].
To further investigate the role of 3-OMDP in this context,
we conducted intervention experiments, which

Bull Pioneer Res Med Clin Sci, 2025, 5(2):61-62

demonstrated that 3-OMDP administration improved
depressive-like behaviors and normalized elevated
hippocampal levels of IL-6 and IL-1B in CSDS mice.
Collectively, these findings suggest that gut microbiota
may influence depression through modulation of
neurotransmitter-mediated inflammation, and that a
“Limosilactobacillus-3-OMDP-IL-1B/IL-6” axis could
represent a critical pathway in gut-brain communication in
depression.

Neurotransmitters are central regulators of mental
functions, including emotion, cognition, and mood [39,
40]. Catecholamines such as dopamine (DA) and
norepinephrine  (NE) are essential ~monoamine
neurotransmitters, and their depletion is associated with
depression risk [41]. In this study, CSDS mice exhibited
reduced DA and NE levels. Catecholamine intermediates,
including phenylethylamine (PEA) and levodopa (L-DP),
were also decreased. PEA acts as a neuromodulator of
aminergic synapses, enhancing energy and mood [42],
while L-DP is clinically used to supplement DA in
Parkinson’s disease [43]. These observations suggest that
dysregulation of catecholaminergic neurotransmission
may contribute to the development of depressive-like
behaviors.

GABA, the primary inhibitory neurotransmitter in the
central nervous system, is generated via glutamate
metabolism. Evidence indicates that GABA levels are
significantly altered in both depressed patients and animal
models [44, 45], with magnetic resonance spectroscopy
studies reporting generally reduced GABA in individuals
with depression [46]. Consistent with these findings,
GABA was decreased in the feces and blood of CSDS
mice in our study. Furthermore, previous studies have
shown that guanosine monophosphate (5-GMP) exhibits
antidepressant-like effects, potentially by indirectly
activating serotonin through NMDA receptor blockade
[47]. Here, 5-GMP levels were significantly decreased in
both feces and hippocampus of CSDS mice, reinforcing
the notion that disruptions in  GABAergic
neurotransmission play a pivotal role in depression
pathogenesis.

As a metabolic product of L-DP, 3-OMDP is formed via
the action of catechol-O-methyltransferase (COMT) [48].
Previous research indicated that 3-OMDP could influence
brain dopamine (DA) levels by inhibiting dopamine
transporter (DAT) function and DA uptake in both striatal
membranes and PC12 cells [49]. DA and its metabolites
are critical components of the brain’s reward circuitry.
Moriya et al. [50] observed that both DAT binding and
dopamine concentrations were markedly reduced in
patients experiencing depression and anhedonia.
Moreover, as a substrate of COMT, 3-OMDP may exert
feedback inhibition on COMT itself. In essence, elevated
3-OMDP levels could restrict catechol conversion of L-

58



Zhong et al.

DP, thereby favoring its transformation into DA and
helping to maintain CNS DA levels. Considering the
central role of the reward system in depression, we
hypothesized that 3-OMDP may contribute to depressive
pathology by modulating DA levels. Notably, our study
revealed significant reductions in DA in blood and 3-
OMDP in the serum, hippocampus, colon, and feces of
CSDS mice. Furthermore, administration of 3-OMDP
alleviated depression-like behaviors in these mice,
highlighting its potential as a therapeutic target for
depression.

Depression is closely linked with inflammation, and
individuals with chronic inflammatory disorders are more
susceptible to depression [51-53]. Previous studies
reported elevated levels of inflammatory mediators,
including IL-6, IL-1p, and TNF-qa, in the serum of patients
with depression [54, 55]. Genetic analyses have also
demonstrated strong associations between IL-6/IL-1B
gene variants and depression risk [56, 57]. IL-6 and IL-1
are prominent pro-inflammatory cytokines that induce
systemic inflammatory responses. In this study, CSDS
mice exhibited significantly increased levels of IL-6 and
IL-1B. Furthermore, gut microbiota dysbiosis is known to
activate the immune system, triggering the release of
inflammatory factors [58, 59]. Here, we found significant
correlations between Limosilactobacillus/Phocaeicola and
IL-6/IL-1f in CSDS mice, suggesting that the gut
microbiota may influence depression through modulation
of inflammatory processes.

Growing evidence indicates that gut microbiota
dysregulation is associated with various diseases, and the
microbiome includes both beneficial and potentially
harmful microbes [60-63]. Limosilactobacillus is
recognized as a beneficial genus in humans [64]. Tyagi et
al. [65] reported that fermented products of
Limosilactobacillus reuteri can enhance bioactive
compounds and antioxidants, which may contribute to
antidepressant effects by mitigating oxidative stress.
Additionally, Bron et al. [66] highlighted that folic acid
and vitamin B12 deficiencies elevate homocysteine levels,
which are linked to depression onset, and
Limosilactobacillus can promote the synthesis of these
vitamins. These findings suggest a potential antidepressant
role for Limosilactobacillus. Consistent with this, our
study showed that reductions in Limosilactobacillus had
the most significant impact on gut-brain axis
neurotransmitters in CSDS mice, particularly 3-OMDP,
and that 3-OMDP intervention mitigated elevated IL-6 and
IL-1P levels. Therefore, Limosilactobacillus may play a
key role in  depression onset, with the
‘Limosilactobacillus-3-OMDP-IL-1p/IL-6’ axis
representing a potential gut-brain pathway in depressive
pathology.
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Several limitations should be acknowledged. First, only
four inflammatory mediators were measured; future work
should explore additional inflammatory factors and their
interactions with gut microbiota. Second, the mechanism
by which Limosilactobacillus contributes to 3-OMDP
production—directly or indirectly—was not investigated.
Future studies using microbiota transplantation could
clarify this relationship. Third, each experimental group
included only eight mice, necessitating further validation.
Fourth, this study focused solely on intraperitoneal 3-
OMDP administration; other delivery routes and the
potential for metabolite formation should be explored.
Finally, only a single 3-OMDP dose was tested; dose-
response studies are needed to establish optimal
therapeutic levels.

In summary, we identified six differential bacterial genera,
14 neurotransmitters across central and peripheral tissues,
and two pro-inflammatory cytokines (IL-6 and IL-1f) in
the hippocampus of CSDS mice. Strong associations were
observed among these microbial, neurotransmitter, and
inflammatory variables. Notably, Limosilactobacillus was
closely linked with both central and peripheral 3-OMDP
and with IL-6/IL-1B. Intervention experiments
demonstrated that 3-OMDP significantly reduced elevated
IL-6/IL-1f levels and alleviated depression-like
behaviors. These findings suggest that gut microbiota
disturbances may contribute to depression by modulating
neurotransmitters and influencing inflammation, with the
‘Limosilactobacillus-3-OMDP-IL-1p/IL-6’ axis
representing a potential gut-brain mechanism. This study
provides insights into the pathogenesis of depression and
highlights potential therapeutic targets.
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