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Abstract

Women diagnosed with ovarian cancer at advanced stages have significantly poorer survival
outcomes compared to those diagnosed at early stages, yet early detection remains a major
clinical challenge. Recent evidence suggests that genetic variations may serve as potential
biomarkers for the early identification of various cancers. In this pilot observational
retrospective study, we investigated whether mitochondrial DNA (mtDNA) variations could
distinguish the most common ovarian cancer subtype, high-grade serous carcinoma (HGSC),
from normal tissue. mtDNA variations were analyzed in twenty whole-exome sequenced (WES)
HGSC samples and fourteen control fallopian tube samples following established genome
sequencing protocols. Using these variants, we developed predictive models for HGSC,
achieving strong performance with an area under the curve (AUC) of 0.88 (CI: 0.74—1.00). The
variants included in the optimal model were further correlated with gene expression to explore
potential functional implications. Validation using the Cancer Genome Atlas (TCGA) dataset,
encompassing over 420 samples, yielded moderate predictive performance (AUC 0.63-0.71).
Overall, our study identified a set of mtDNA variations capable of distinguishing HGSC with
high accuracy, with MT-CYB gene variants notably increasing HGSC risk by over 30 percent
and exhibiting significantly reduced expression in affected patients. These findings suggest that
mtDNA-based predictive models could be integrated into liquid biopsy approaches for early
detection of ovarian cancer, paralleling advances in other malignancies.
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Introduction

Early detection of ovarian cancer remains challenging.
While patients diagnosed at early stages have a 5-year
survival rate exceeding 90%, over 70 percent are identified
at advanced stages, where the S-year survival drops to
approximately 40% [1, 2]. Early diagnosis is therefore
crucial for improving prognosis and survival, yet no
current screening methods reliably detect ovarian cancer
at an early stage [3]. Recent studies have suggested that
genomic variations, including those in mitochondrial

DNA (mtDNA), could aid in cancer detection [4-7].
Although mtDNA variations may not directly affect
transcription or translation, they can be leveraged to
develop models that differentiate cancerous from normal
cells. Cell-free DNA (cfDNA), present in bodily fluids and
reflecting the genetic profile of the tissue of origin, enables
non-invasive tumor profiling through liquid biopsy [8].
cfDNA variations have already been employed to detect
cancers at early stages [9, 10], guide prognosis, and
monitor treatment response in lung cancer [11, 12], colon
cancer with KRAS mutations [13], and aggressive breast
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cancers such as triple-negative subtypes [14]. These
findings indicate that mtDNA variations in cfDNA might
also be useful for early ovarian cancer detection. To
explore this, we utilized a well-characterized biobank of
ovarian cancer and normal fallopian tissue samples to
identify and compare mtDNA variations.

The primary aim of this pilot study was to determine
whether mtDNA variations could distinguish HGSC from
normal tissue. Prediction models were validated across
different platforms and using the independent TCGA
HGSC dataset. Significant mtDNA variants were further
analyzed for correlations with HGSC gene expression and
clinical outcomes.

Results and Discussion

mtDNA single nucleotide variations (SNVs)
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Whole-exome sequencing (WES) of DNA from HGSC
cases (N =20) and control fallopian tube samples (N = 14)
identified 393 variants across 37 mitochondrial genes. In
the discovery phase, all mtDNA SNVs were included in a
multivariable LASSO regression analysis. Bootstrapping
was used to determine the optimal penalty parameter
(lambda, 1) to minimize overfitting, resulting in A = 0.136,
which was lower than the standard lambda.min (0.176)
and lambda.lse (0.255) recommended by the glmnet
package ((Figure 1b), dotted lines). Using this parameter,
the five most informative variants for HGSC prediction
were selected (Figure 1a). Variants in MT-ATP8, MT-
NDS5, and MT-CYB were associated with increased HGSC
risk (OR > 1), whereas variants in MT-TP and MT-CO1
were protective (OR < 1). The predictive model achieved
an AUC of 0.88 (95 percent CI: 0.74-1.00) (Figure 1b).
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Figure 1. Prediction of HGSC based on mtDNA alterations. (a) Out of 393 identified mtDNA variants, five were selected
as the most informative for predicting ovarian cancer, achieving an AUC of 0.88 (95% CI: 0.74—-1.00). REF indicates the
reference allele; ALT represents the alternative allele detected; VAF denotes the variant allele frequency in cancer samples;
OR reflects the odds ratio comparing alleles in cancer versus control samples; MT Gene specifies the mitochondrial gene
name; SNP refers to the known single nucleotide polymorphism identifier. *The LASSO regression approach prioritizes
predictive variable selection rather than formal statistical inference; variant effect sizes and confidence intervals were
estimated using the R package selectivelnference (v. 1.2.5), though potential overfitting may influence results. (b)
Visualization of LASSO regression with 95% confidence intervals: the top axis shows the number of SNVs selected by the
model, the left axis indicates the corresponding AUC, and the bottom axis depicts the log2-transformed lambda tuning
parameter chosen through bootstrapping and cross-validation. Dotted lines indicate reference lambda values: lambda.1se
(right), lambda.min (center), and the selected A (left). (c) Heatmap of mtDNA variants included in the model per sample,
with red representing variant presence and blue indicating absence; N/A indicates not applicable.

Linking significant mtDNA variants to gene
expression

Gene expression profiles were compared between 112
HGSC tumors and 12 control samples. RNA sequencing
analysis revealed 3,382 transcripts showing significant
differential expression out of 61,851 tested, using an
adjusted p-value < 0.005 to correct for multiple testing

(Figure 2a). Among the 37 mitochondrial genes analyzed,
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13 displayed notable expression differences between
cancerous and normal tissues: MT-RNR1, MT-TS1, MT-
T™, MT-ND3, MT-TP, MT-TK, MT-TS2, MT-TV, MT-
CO2, MT-CO1, MT-TL1, MT-CYB, and MT-TY. These
13 genes were then subjected to multivariable regression,
identifying four as independently linked to increased
ovarian cancer risk (Figure 2b).
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Figure 2. Differential expression analysis and
association with mtDNA variants in HGSC versus
normal fallopian tube samples. (a) Comparison of gene
expression between HGSC tumors and control tubal
tissue identified 3,382 transcripts (out of 61,851) as
significantly altered, using an FDR-adjusted p-value <

0.005 to account for multiple testing. (b) The 13
mitochondrial genes found significant in univariable
analysis were included in a multivariable regression
model, revealing four genes independently associated
with HGSC. Among these, MT-CYB (highlighted in
red) harbored SNVs characteristic of HGSC and was
incorporated into the cancer prediction model (Figure
1). (c) Correlation between MT-CYB mtDNA genotype
and gene expression showed that 1,728 of the 3,382
differentially expressed genes were significantly
associated (FDR-adjusted p < 0.005), with the top 20
displayed. (d) Correlation of MT-CYB gene expression
with the same set of 3,382 significant transcripts
identified 364 genes with significant association (FDR-
adjusted p < 0.005), with the top 15 shown.

MT-CYB emerged as a key predictor in the ovarian cancer
model, conferring elevated HGSC risk, and its expression
was markedly reduced in patients (Figure 2b). To explore
the broader impact of MT-CYB alterations on gene
regulation and biological processes, we first identified
genes significantly influenced by these changes and then
performed pathway enrichment analysis.

MT-CYB expression was correlated with all 3,382
transcripts that were differentially expressed between
HGSC and control tissues to exclude genes with non-
significant changes. This identified 1,728 transcripts
significantly associated with MT-CYB variation (FDR-
adjusted p < 0.005), with the top 20 illustrated in Figure
2¢. Next, MT-CYB gene expression itself (from the
multivariable model) was correlated with the same set of
3,382 genes, yielding 364 significantly associated
transcripts (FDR-adjusted p < 0.005), with the top 15
shown in Figure 2d. A total of 202 genes were common
to both analyses, showing significant correlation with both
MT-CYB variation and expression.

Pathway enrichment of MT-CYB-associated genes
KEGG pathway enrichment analysis was performed using
the 1,890 unique genes whose expression correlated
significantly with MT-CYB variation and/or expression.
The pathways with significant enrichment are summarized
in Table 1.

Table 1. KEGG pathway enrichment analysis for genes significantly associated with MT-CYB variants and/or
expression. A total of 3,382 transcripts were identified as differentially expressed between HGSC and control samples.
Among these, 1,890 genes showed significant correlation with MT-CYB genetic variation and/or its expression (FDR-
adjusted p < 0.005). These genes were analyzed for pathway enrichment, revealing significant involvement in energy
metabolism, cancer-related pathways, neurodegenerative disorders, and other cellular processes (FDR-adjusted p < 0.01).

KEGG ID Pathway Description
hsa00190 Oxidative Phosphorylation
hsa05415 Diabetic Cardiomyopathy
hsa04714 Thermogenesis

Bull Pioneer Res Med Clin Sci, 2021, 1(1):131-142

Adjusted Enrichment

Pathway Category p-value Fold

Energy Metabolism <0.001 2.84

Cardiovascular Disease <0.001 2.29

Environmental Adaptation <0.001 2.17
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hsa05016 Huntington’s Disease Neurodegenerative Disease 0.001 1.89
hsa05014 Amyotrophic Lateral Sclerosis Neurodegenerative Disease 0.001 1.80
hsa05012 Parkinson’s Disease Neurodegenerative Disease 0.001 1.88
hsa04932 Non-Alcoholic Fatty Liver Disease Endocrine & Metabolic Disease 0.003 2.12
hsa05020 Prion Disease Neurodegenerative Disease 0.004 1.76
hsa05208 Chemical Carcinogenes'is — Reactive Oxygen Cancer 0.006 181
Species
hsa05010 Alzheimer’s Discase Neurodegenerative Disease 0.009 1.55
hsa05022 Multiple Neurodegeneration Pathways Neurodegenerative Disease 0.014 1.46
hsa00510 N-Glycan Biosynthesis Glycan Biosynthesis & Metabolism 0.017 2.59
hsa00600 Sphingolipid Metabolism Lipid Metabolism 0.019 2.54
hsa04723 Retrograde Endocannabinoid Signaling Nervous System 0.020 1.84
The pathway with the highest enrichment was oxidative in the form of adenosine triphosphate (ATP). OXPHOS
phosphorylation (OXPHOS), a central component of comprises five protein complexes (I-V) and occurs within
cellular energy metabolism. This pathway involves a the mitochondria (Figure 3).

series of enzymes that oxidize nutrients to generate energy
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Figure 3. Overview of the oxidative phosphorylation (OXPHOS) pathway. Identified as the most enriched pathway in our
analysis (FDR-adjusted p < 0.001), OXPHOS is illustrated in the upper panel adapted from KEGG (with permission),
showing complexes [-IV embedded in the mitochondrial membrane. The lower panel provides a more detailed breakdown
of pathway components. Components highlighted in red indicate those significantly associated with both MT-CYB variants
and gene expression. Complex I (NADH dehydrogenase) transfers electrons from NADH while actively pumping protons
across the inner mitochondrial membrane. Complex II (succinate dehydrogenase) channels electrons from succinate but
does not directly contribute to proton transport. Complex III (ubiquinol-cytochrome ¢ reductase, bcl complex) shuttles
electrons from ubiquinone and simultaneously pumps protons. Complex IV (cytochrome c oxidase) transfers electrons
from cytochrome ¢ to molecular oxygen, forming water and continuing proton translocation. ATP synthase (Complex V)
harnesses the proton gradient generated by the electron transport chain to produce ATP from ADP and inorganic phosphate.

Development and evaluation of the predictive model were used to construct predictive models on two different
The five mtDNA single nucleotide variants identified platforms: (1) LASSO regression implemented in R
during the discovery phase via multivariable regression (v4.4.1) (Figures 4a and 4b) and (2) MATLAB
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(vR2023b) (Figures 4c and 4d). Using the University of
Towa dataset, the LASSO-based model achieved an AUC
of 0.91 (95% CI: 0.82-1.00) (Figure 4a), whereas the
MATLAB model reached an AUC of 0.95 (95% CI: 0.87—
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1.00) (Figure 4e). The slightly higher AUC in the
validation phase compared to the initial discovery dataset
(Figure 1b) reflects that these analyses were performed
using preselected variants from the same dataset.
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Figure 4. Model training, validation, and testing. (a) The LASSO model for predicting HGSC was validated on UI data
using only five key mtDNA variants, achieving an AUC of 91% (CI: 82—-100%). (b) The odds ratios of variants in the
LASSO model indicate increased risk for HGSC when OR >1 and protective effects when OR <1. (¢) ROC curve of the
model tested on TCGA data using the pROC package. (d) Model performance on TCGA data, optimized for 0.9 sensitivity,
reached an AUC of 0.57 (CI: 0.53-0.62). (e) Validation in UI data with MATLAB, using efficient logistic regression,
shows the confusion matrix (left) and ROC curve (right), yielding an AUC of 0.95. (f) Testing on TCGA data produced a
confusion matrix (left) and ROC curve (right) with an AUC of 0.71. (g) Correlation analysis of the MT-CYB variant with
differential gene expression in HGSC versus controls indicated moderate agreement between Ul and TCGA data (AUC =
0.68, CI: 0.66—0.71). (h) A 2 x 2 matrix from Figure 4g illustrates that 1370 genes were shared between Ul and TCGA
datasets. (i) Correlation of MT-CYB expression with gene expression revealed moderate concordance between the datasets
(AUC =0.63, CI: 0.58-0.69). (j) The 2 x 2 matrix for Figure 4i shows 303 genes common to both datasets.

After extracting and processing WES data from TCGA
HGSC samples, the same five mtDNA variants used in the
trained Ul model were selected for testing. Using the
LASSO model with TCGA data and pROC (v1.18.5)
resulted in an AUC of 0.57 (CI: 0.53-0.62; (Figure 4d)).
MATLAB-based testing on TCGA achieved better
performance, with an AUC of 0.71 (95% CI: 0.53-0.88),
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partially overlapping the CIs from the UI validation
(Figure 4f).

Validation of correlation analysis

RNAseq data from TCGA HGSC samples were processed.
Of the 3382 genes differentially expressed between HGSC
and controls, 2716 transcripts were available in TCGA
(423 samples). Among 1728 genes correlated with MT-
CYB variation in the Ul dataset, 1370 transcripts were
present in TCGA, showing fair agreement (AUC = 0.68,
CI: 0.66-0.71, (Figure 4g)), with 936 genes (68.3%)
showing correlations in the same direction (r > 0 positive
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or r < 0 negative; (Figure 4h)). From 364 genes
significantly correlated with MT-CYB expression in Ul,
303 were represented in TCGA, with lower concordance
(AUC = 0.63, CI: 0.58-0.69, (Figure 4i)) and 111 genes
(36.6%) showing directional agreement (Figure 4j).

This pilot investigation aimed to identify mitochondrial
genetic variations capable of distinguishing HGSC from
normal tubal tissue. WES analyses revealed mtDNA
variants that were used to build predictive models. A
model incorporating five SNVs from distinct
mitochondrial genes achieved an AUC of 0.88 (95% CI:
0.74-1.00). Validation across different analytical
platforms using Ul data yielded consistent results (AUCs:
0.91 and 0.95). When evaluated on TCGA samples with
alternative machine learning approaches, AUCs reached
up to 0.71 (95% CI: 0.53-0.88), partially overlapping the
initial model’s CI. While performance is fair [15] and
insufficient alone for clinical diagnostics, integration with
additional predictive models [16-18] could enhance
ovarian cancer prediction. Reduced performance in TCGA
testing may be influenced by the origin of control samples,
which were taken from the same patients’ normal tissues
rather than independent normal tubes as in UI. The effect
of control source on model accuracy is unclear, especially
given mtDNA’s tendency for spontaneous mutations in
normal tissue. Differences in genetic substructure between
TCGA and UI populations may also affect model
performance [19]. Comprehensive comparisons require
variant analyses across large, diverse populations with
similar genetic backgrounds.

The ovarian cancer prediction model relied on five
mtDNA single-nucleotide variants (SNVs), with the MT-
CYB variant notably increasing the likelihood of HGSC
by more than 30%. Expression analysis revealed a
significant downregulation of MT-CYB in HGSC samples
relative to controls, a pattern that remained consistent even
after accounting for other mitochondrial genes in
multivariable models. Importantly, MT-CYB alterations
were confined to tumor tissues, suggesting its strong
potential as a predictive marker for ovarian cancer.
Examination of TCGA datasets showed that under 10% of
control samples carried the MT-CYB variant, and in more
than half of these, the mutation appeared both in the tumor
and matched normal tissue. Cytochrome b, encoded by
MT-CYB, is the only mtDNA-derived component of
Complex III (ubiquinol:cytochrome c oxidoreductase),
which resides in the inner mitochondrial membrane and
functions as the second enzyme in oxidative
phosphorylation, transferring electrons from ubiquinol to
cytochrome ¢ and driving proton translocation across the
membrane. This highly conserved, hydrophobic protein
contains two heme groups [20, 21]. MT-CYB mutations
have been previously linked to ovarian carcinoma [22] and
are believed to reprogram mitochondrial metabolism,
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elevating reactive oxygen species (ROS) production
within tumor cells [23], potentially facilitating adaptation
to hypoxic microenvironments [24]. Consistent with this,
mtDNA mutations accumulate progressively from primary
ovarian lesions to metastases, indicating the presence of
driver mutations that may confer metastatic advantage
[22].

Another notable variant in the predictive model was
located in MT-ATPS, a mitochondrial gene recently
detected in plasma and exosomes from highly aggressive
lung cancers, highlighting its potential for liquid biopsy
applications [25]. mtDNA is particularly prone to ROS-
induced mutations even in normal tissue, giving rise to
multiple coexisting mtDNA variants—a condition termed
heteroplasmy [26]. Heteroplasmy refers to the presence of
two or more mtDNA types within the same cell, which can
occur in both normal and tumor tissues and vary between
cells. Consequently, up to 72% of tumor-associated
mtDNA variants are also observed in germline cells of
healthy individuals [27]. This phenomenon underpinned
our decision to include all variants in the ovarian cancer
model, irrespective of origin, allowing the model to select
variants most predictive of disease.

Multiple classes of mtDNA alterations are clinically
relevant in tumorigenesis [28]. Both somatic and germline
mtDNA mutations have been implicated in a variety of
cancers, including renal, colon, head and neck, pancreatic,
breast, ovarian, prostate, and bladder cancers [28, 29]. In
prostate cancer, the overall mtDNA variant burden may
serve as an indicator of tumorigenicity [30]. Variants in
MT-COl, for example, appear protective against ovarian
cancer, consistent with observations in our study [31].
Although the functional impacts of many mtDNA variants
remain unclear, analyses integrating mtDNA and nuclear
DNA (nDNA) co-expression have consistently
highlighted OXPHOS pathways as the most enriched
across several cancer types [32]. In line with this,
OXPHOS was the top-enriched pathway in our study when
comparing HGSC tissues to normal fallopian tubes.
Furthermore, genes associated with mtDNA variation
were involved in diverse biological functions: some
influence neurotransmitter oxidation at the outer
mitochondrial membrane (MAOA), potentially affecting
behavior [33]; others encode tumor-related proteins
(CHIC1) [34]; and some maintain cellular homeostasis,
such as GPR89A, which regulates intracellular pH [35].
Comparing gene expression profiles between normal
fallopian tubes and HGSC samples appears to be the most
reliable strategy for uncovering functional consequences
of mtDNA variations, rather than using other normal
tissues from the genital tract [36]. Unlike nuclear DNA,
mitochondria harbor multiple copies of mtDNA, with
replication, transcription, and translation regulated by both
mitochondrial-encoded rRNAs and tRNAs and nDNA-
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encoded proteins, allowing adaptation to environmental
stressors [37]. Cancer cells can exploit these regulatory
mechanisms to gain survival advantages, and
understanding these processes could guide the
development of targeted therapies [38]. The tumor
microenvironment may also influence mitochondrial gene
expression, as suggested by several studies [38]. In our
analyses, some of the top transcripts linked to mtDNA
variation corresponded to long non-coding RNAs
(IncRNAs) and microRNAs implicated in epigenetic
regulation across multiple cancers, including MIR4423,
AC010280.1, AC010280.3, AL121839.2, and
AC078883.2 [39-43]. Despite these findings, substantial
gaps remain regarding how such alterations affect specific
cancers in  particular Additionally,
numtogenesis—the integration of mtDNA sequences into
nDNA—is activated in certain cancers, such as colorectal
tumors, and may impact prognosis [44]. Although the
precise mechanisms are not fully understood, mtDNA
insertions within tumor suppressor genes could disrupt
cellular pathways and promote oncogenesis [44],
highlighting how subtle mitochondrial changes can
profoundly influence nuclear function and cancer
progression.

Circulating tumor DNA (ctDNA) and cell-free DNA
(cfDNA) can be reliably isolated from the blood of ovarian
cancer patients, and tumor-specific alterations have been
detected in peripheral blood [45—48]. The identification of
tumor-derived genetic changes in blood, termed liquid
biopsy, has been applied in several cancers for
individualized treatment, monitoring, and early detection,
with colorectal and lung cancers recently receiving FDA
approval [49, 50]. Since ctDNA is detectable in early-stage
ovarian cancer, and our model predicts ovarian cancer
with good accuracy, it could serve as an effective tool for
early diagnosis. Moreover, this approach may allow
detection of recurrent or persistent disease following
adjuvant therapy, although the predictive model may
require modification to account for mutations present in
recurrent tumors. For clinical application in early-stage
ovarian cancer, the prediction model would need to be
prospectively validated in independent cohorts and
include samples representing diverse disease stages to
capture the full spectrum of genetic variation.

A major strength of this study is the use of WES to detect
mtDNA variants in both HGSC patients and healthy
controls without family history of ovarian cancer. Variant
analyses followed recommended genome sequencing best
practices, including validation, and model testing
incorporated sufficient cases and controls from the TCGA
HGSC dataset, all matching the tumor histology of the
initial cohort. Multiple analytical platforms were

contexts.
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employed to validate the prediction model, achieving
acceptable performance levels.

However, limitations include the relatively small sample
size, which may restrict the diversity of mtDNA variants
and exclude potentially discriminative mutations, and may
also widen the 95% CI for AUC, potentially inflating
model performance. Additionally, the cohort lacked racial
diversity, with only one of 20 ovarian cancer patients
being Black and the remainder White (one unknown),
limiting generalizability. To fully realize the potential of
liquid biopsy-based mtDNA prediction, additional studies
incorporating larger, racially diverse populations and
multiple disease stages are necessary. Including other
biomarkers, such as CAI125, clinical parameters, or
additional genomic data, could further enhance model
performance. Prior work has demonstrated that integrating
clinical, pathological, and genomic information improves
prediction accuracy for chemotherapy response in ovarian
cancer [2, 51, 52]. Ultimately, robust prediction models for
ovarian cancer will require prospective multi-institutional
validation to capture population variability and to establish
their utility in early detection, following the precedent set
by breast cancer studies [14].

Conclusion

This pilot, retrospective study identifies a set of mtDNA
variations capable of distinguishing HGSC with strong
performance. These findings represent a potential
foundation for developing serum-based detection tools for
ovarian  cancer, including early-stage disease.
Furthermore, the predictive model highlights links
between HGSC-associated mtDNA variants and genes
involved in OXPHOS pathways, suggesting broader
implications for cellular metabolic and biological
functions.

Materials and Methods

We conducted a single-center, retrospective, case—control
pilot study utilizing tumor specimens collected during
cytoreductive surgery from 112 patients with HGSC
(cases), compared against benign fallopian tube specimens
from 14 women undergoing surgery for non-malignant
conditions (controls). DNA and RNA were extracted from
all samples. Whole-exome sequencing (WES) was
performed on 20 HGSC cases and all 14 controls, while
RNA sequencing (RNAseq) was carried out on 112 HGSC
cases and 12 control fallopian tube samples.

Specimen collection

HGSC tumor samples and associated clinical data were
obtained from the Department of Obstetrics and
Gynecology and Gynecologic Oncology Biobank (IRB,
ID#200209010), part of the Women’s Health Tissue

137



Li et al.

Repository (WHTR, IRB, ID#201804817). All specimens
were originally collected with written informed consent
from adult patients under University of Iowa IRB
guidelines. Tumor samples were reviewed by a board-
certified pathologist, flash-frozen, and diagnosis was
confirmed on paraffin-embedded sections from the time of
surgery. All experimental protocols were approved by the
University of lowa Biomedical IRB-01.

Fallopian tube specimens were obtained from women
undergoing  gynecologic  procedures for  benign
indications, primarily sterilization, with no significant
cancer history aside from occasional skin squamous cell
carcinoma. Fallopian tubes were selected as controls
because they represent the most likely site of origin for
HGSC [53-55], a strategy previously validated in ovarian
cancer research [16]. DNA and RNA were isolated from
the epithelial layer at the junction of the ampullary and
fimbriated ends. Of the 20 normal fallopian tube samples
collected, 12 yielded sufficient RNA for sequencing. RNA
from both HGSC and control specimens had been
previously extracted and purified [56], and WES was
successfully performed on 14 fallopian tube specimens.

DNA sequencing

Genomic DNA (gDNA) was extracted from frozen tumor
and fallopian tube tissues using the DNeasy Blood and
Tissue Kit (QIAGEN, Hilden, Germany) following the
manufacturer’s instructions. DNA yield and purity were
evaluated via NanoDrop Model 2000 spectrophotometry
and horizontal agarose gel electrophoresis. Whole-exome
sequencing was outsourced to GeneWiz (Azenta,
Chelmsford, MA, USA). Libraries were prepared with the
Agilent SureSelect Human Exome Library V5 kit and
sequenced on an Illumina HiSeq 2000 platform (2 x 150
bp) to an average depth of 100x. Raw reads were aligned
to the human reference genome (hg38) using the Burrows—
Wheeler Aligner [57]. Across samples, the mean Phred
quality score was 37.76, and 89.96% of bases had a quality
>30. Coverage analysis was conducted using GATK
v4.6.1.0, and sequencing quality control was performed
with FastQC v0.12.1.

RNA sequencing

Total RNA was extracted from HGSC and control
specimens stored in the Biobank. The RNA isolation,
processing, and sequencing workflow has been described
previously [51, 58]. Briefly, RNA was purified using the
mirVana kit (Thermo Fisher, Waltham, MA, USA), with
quality  assessed by  Trinean Dropsense 16
spectrophotometry and Agilent 2100 Bioanalyzer.
Samples with RNA integrity number (RIN) >7 were
deemed suitable for sequencing. A total of 500 ng of RNA
per sample was quantified using Qubit (Thermo Fisher),
converted to cDNA, and ligated with sequencing adaptors
using the Illumina TriSeq stranded total RNA library
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preparation kit (Illumina, San Diego, CA, USA).
Sequencing was performed on an Illumina HiSeq 4000
platform using 150 bp paired-end sequencing by synthesis
(SBS) chemistry at the Genome Facility of the University
of Iowa Institute of Human Genetics (ITHG).

Analysis of single nucleotide variations (SNVs)
WES-derived DNA sequences were aligned to the human
mitochondrial reference sequence (Revised Cambridge
Reference Sequence [rCRS], GenBank NC 012920,
https://www.mitomap.org/MITOMAP/HumanMitoSeq,
accessed 20 December 2024) using BWA (v0.7.17-r1188).
The resulting BAM files were processed with samtools
(v1.19.2) [59], Picard toolkit (v2.27.1), and GATK
(v4.6.1.0) [60] to generate Variant Call Format (VCF) files
for downstream analyses, following recommended best
practices in genome sequencing [61]. A comprehensive
table of identified SN'Vs across all samples was compiled
for subsequent analyses.

To determine which mitochondrial SNVs were most
predictive of HGSC, multivariable LASSO regression was
performed using the glmnet R package (v4.1-8). Internal
validation was conducted via k-fold cross-validation, and
the regularization parameter (L) was optimized using
bootstrapping to reduce overfitting in the context of a
limited sample size [62]. Model performance was
evaluated using the area under the receiver operating
characteristic curve (AUC) with 95% confidence intervals
(CI), where 0.5 indicates no predictive power and 1.0
represents perfect discrimination. Because LASSO
prioritizes feature selection rather than inference, variable-
specific confidence intervals were estimated using the
selectivelnference R package (v1.2.5), recognizing
potential limitations due to overfitting.

Correlating mtDNA variants with gene expression
and pathway enrichment

RNAseq reads were aligned to the human reference
genome (hg38) using STAR (v2.7.11b) [63], generating
BAM files for downstream quantification. Gene
expression levels were computed with featureCounts [64]
and normalized using DESeq2 (v1.38.3) [65], including
log2 transformation. Gene annotation and variant
identification were performed with ENSEMBL.
Univariable analyses were conducted for all 37
mitochondrial genes harboring sequence variants to
compare HGSC and control groups. Genes with adjusted
p-values < 0.05 were included in multivariable logistic
regression to identify those independently associated with
HGSC (p < 0.05). Whole-genome differential expression
analysis employed a stricter false discovery rate (FDR)-
adjusted alpha threshold of 0.005.

Spearman’s rank correlation was used to examine
relationships between mtDNA SNVs and gene expression,
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acknowledging that these variables are not fully
independent. Statistical significance was assessed via p-
values and corrected for multiple comparisons using FDR
[66]. Genes showing significant correlation with mtDNA
variants were subjected to pathway enrichment analysis
using clusterProfiler (v4.3.3) [67], interrogating KEGG
pathways  (https://www.genome.jp/kegg/pathway.html,
accessed 17 December 2024). Only pathways with FDR-
corrected p-values < 0.05 were considered significant.

Prediction model evaluation

Validation using TCGA dataset

The HGSC TCGA cohort was employed to test the
predictive model. Access to controlled WES data was
granted via the Genomic Data Commons Data Portal
(dbGaP# 29868). WES data from 448 HGSC tumors and
190 matched normal controls were processed using BWA,
samtools, Picard (v2.27.1), and GATK (v4.6.1.0) to
identify SNVs and generate VCF files. Informative
mtDNA SNVs identified from the Ul prediction model
were located within the TCGA dataset to test the model’s
predictive performance. The glmnet R package (v4.1-8)
was used to rebuild the model using the most informative
SNVs, and pROC (v1.18.5) was applied to assess
performance in this independent dataset.

RNAseq BAM files from 423 TCGA HGSC samples were
also downloaded. Gene expression was extracted using
STAR and featureCounts (v2.0.6), and genes previously
identified as significantly correlated in the Ul dataset were
examined for associations with MT-CYB SNVs and
expression changes. Normal tube gene expression from the
UI dataset served as controls, and all data were normalized
and log2-transformed. Correlation between SNVs and
gene expression in TCGA was performed using
Spearman’s rank test, with FDR correction applied for
multiple comparisons [66].

Testing on an independent analytical platform

The HGSC prediction model was further evaluated using
MATLAB (v2024b) machine learning tools, employing
the classification learner with over 30 different classifier
algorithms. The Ul-trained model, including only the most
informative SNVs, was initially trained and validated. The
same SNVs from the TCGA dataset were then input into
MATLAB to test the model across this independent
analytical platform. Testing accounted for outcome
weighting and class imbalance due to the smaller number
of controls relative to cases.
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