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Abstract 

Women diagnosed with ovarian cancer at advanced stages have significantly poorer survival 

outcomes compared to those diagnosed at early stages, yet early detection remains a major 

clinical challenge. Recent evidence suggests that genetic variations may serve as potential 

biomarkers for the early identification of various cancers. In this pilot observational 

retrospective study, we investigated whether mitochondrial DNA (mtDNA) variations could 

distinguish the most common ovarian cancer subtype, high-grade serous carcinoma (HGSC), 

from normal tissue. mtDNA variations were analyzed in twenty whole-exome sequenced (WES) 

HGSC samples and fourteen control fallopian tube samples following established genome 

sequencing protocols. Using these variants, we developed predictive models for HGSC, 

achieving strong performance with an area under the curve (AUC) of 0.88 (CI: 0.74–1.00). The 

variants included in the optimal model were further correlated with gene expression to explore 

potential functional implications. Validation using the Cancer Genome Atlas (TCGA) dataset, 

encompassing over 420 samples, yielded moderate predictive performance (AUC 0.63–0.71). 

Overall, our study identified a set of mtDNA variations capable of distinguishing HGSC with 

high accuracy, with MT-CYB gene variants notably increasing HGSC risk by over 30 percent 

and exhibiting significantly reduced expression in affected patients. These findings suggest that 

mtDNA-based predictive models could be integrated into liquid biopsy approaches for early 

detection of ovarian cancer, paralleling advances in other malignancies. 
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Introduction 

Early detection of ovarian cancer remains challenging. 

While patients diagnosed at early stages have a 5-year 

survival rate exceeding 90%, over 70 percent are identified 

at advanced stages, where the 5-year survival drops to 

approximately 40% [1, 2]. Early diagnosis is therefore 

crucial for improving prognosis and survival, yet no 

current screening methods reliably detect ovarian cancer 

at an early stage [3]. Recent studies have suggested that 

genomic variations, including those in mitochondrial 

DNA (mtDNA), could aid in cancer detection [4–7]. 

Although mtDNA variations may not directly affect 

transcription or translation, they can be leveraged to 

develop models that differentiate cancerous from normal 

cells. Cell-free DNA (cfDNA), present in bodily fluids and 

reflecting the genetic profile of the tissue of origin, enables 

non-invasive tumor profiling through liquid biopsy [8]. 

cfDNA variations have already been employed to detect 

cancers at early stages [9, 10], guide prognosis, and 

monitor treatment response in lung cancer [11, 12], colon 

cancer with KRAS mutations [13], and aggressive breast 
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cancers such as triple-negative subtypes [14]. These 

findings indicate that mtDNA variations in cfDNA might 

also be useful for early ovarian cancer detection. To 

explore this, we utilized a well-characterized biobank of 

ovarian cancer and normal fallopian tissue samples to 

identify and compare mtDNA variations. 

The primary aim of this pilot study was to determine 

whether mtDNA variations could distinguish HGSC from 

normal tissue. Prediction models were validated across 

different platforms and using the independent TCGA 

HGSC dataset. Significant mtDNA variants were further 

analyzed for correlations with HGSC gene expression and 

clinical outcomes. 

Results and Discussion 

mtDNA single nucleotide variations (SNVs) 

Whole-exome sequencing (WES) of DNA from HGSC 

cases (N = 20) and control fallopian tube samples (N = 14) 

identified 393 variants across 37 mitochondrial genes. In 

the discovery phase, all mtDNA SNVs were included in a 

multivariable LASSO regression analysis. Bootstrapping 

was used to determine the optimal penalty parameter 

(lambda, λ) to minimize overfitting, resulting in λ = 0.136, 

which was lower than the standard lambda.min (0.176) 

and lambda.1se (0.255) recommended by the glmnet 

package ((Figure 1b), dotted lines). Using this parameter, 

the five most informative variants for HGSC prediction 

were selected (Figure 1a). Variants in MT-ATP8, MT-

ND5, and MT-CYB were associated with increased HGSC 

risk (OR > 1), whereas variants in MT-TP and MT-CO1 

were protective (OR < 1). The predictive model achieved 

an AUC of 0.88 (95 percent CI: 0.74–1.00) (Figure 1b). 

 

a) 

 
 

b) c) 

Figure 1. Prediction of HGSC based on mtDNA alterations. (a) Out of 393 identified mtDNA variants, five were selected 

as the most informative for predicting ovarian cancer, achieving an AUC of 0.88 (95% CI: 0.74–1.00). REF indicates the 

reference allele; ALT represents the alternative allele detected; VAF denotes the variant allele frequency in cancer samples; 

OR reflects the odds ratio comparing alleles in cancer versus control samples; MT Gene specifies the mitochondrial gene 

name; SNP refers to the known single nucleotide polymorphism identifier. *The LASSO regression approach prioritizes 

predictive variable selection rather than formal statistical inference; variant effect sizes and confidence intervals were 

estimated using the R package selectiveInference (v. 1.2.5), though potential overfitting may influence results. (b) 

Visualization of LASSO regression with 95% confidence intervals: the top axis shows the number of SNVs selected by the 

model, the left axis indicates the corresponding AUC, and the bottom axis depicts the log2-transformed lambda tuning 

parameter chosen through bootstrapping and cross-validation. Dotted lines indicate reference lambda values: lambda.1se 

(right), lambda.min (center), and the selected λ (left). (c) Heatmap of mtDNA variants included in the model per sample, 

with red representing variant presence and blue indicating absence; N/A indicates not applicable. 

Linking significant mtDNA variants to gene 

expression 

Gene expression profiles were compared between 112 

HGSC tumors and 12 control samples. RNA sequencing 

analysis revealed 3,382 transcripts showing significant 

differential expression out of 61,851 tested, using an 

adjusted p-value < 0.005 to correct for multiple testing 

(Figure 2a). Among the 37 mitochondrial genes analyzed, 

13 displayed notable expression differences between 

cancerous and normal tissues: MT-RNR1, MT-TS1, MT-

TM, MT-ND3, MT-TP, MT-TK, MT-TS2, MT-TV, MT-

CO2, MT-CO1, MT-TL1, MT-CYB, and MT-TY. These 

13 genes were then subjected to multivariable regression, 

identifying four as independently linked to increased 

ovarian cancer risk (Figure 2b). 
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c) 

 

d) 

Figure 2. Differential expression analysis and 

association with mtDNA variants in HGSC versus 

normal fallopian tube samples. (a) Comparison of gene 

expression between HGSC tumors and control tubal 

tissue identified 3,382 transcripts (out of 61,851) as 

significantly altered, using an FDR-adjusted p-value < 

0.005 to account for multiple testing. (b) The 13 

mitochondrial genes found significant in univariable 

analysis were included in a multivariable regression 

model, revealing four genes independently associated 

with HGSC. Among these, MT-CYB (highlighted in 

red) harbored SNVs characteristic of HGSC and was 

incorporated into the cancer prediction model (Figure 

1). (c) Correlation between MT-CYB mtDNA genotype 

and gene expression showed that 1,728 of the 3,382 

differentially expressed genes were significantly 

associated (FDR-adjusted p < 0.005), with the top 20 

displayed. (d) Correlation of MT-CYB gene expression 

with the same set of 3,382 significant transcripts 

identified 364 genes with significant association (FDR-

adjusted p < 0.005), with the top 15 shown. 

MT-CYB emerged as a key predictor in the ovarian cancer 

model, conferring elevated HGSC risk, and its expression 

was markedly reduced in patients (Figure 2b). To explore 

the broader impact of MT-CYB alterations on gene 

regulation and biological processes, we first identified 

genes significantly influenced by these changes and then 

performed pathway enrichment analysis. 

MT-CYB expression was correlated with all 3,382 

transcripts that were differentially expressed between 

HGSC and control tissues to exclude genes with non-

significant changes. This identified 1,728 transcripts 

significantly associated with MT-CYB variation (FDR-

adjusted p < 0.005), with the top 20 illustrated in Figure 

2c. Next, MT-CYB gene expression itself (from the 

multivariable model) was correlated with the same set of 

3,382 genes, yielding 364 significantly associated 

transcripts (FDR-adjusted p < 0.005), with the top 15 

shown in Figure 2d. A total of 202 genes were common 

to both analyses, showing significant correlation with both 

MT-CYB variation and expression.  

Pathway enrichment of MT-CYB-associated genes 

KEGG pathway enrichment analysis was performed using 

the 1,890 unique genes whose expression correlated 

significantly with MT-CYB variation and/or expression. 

The pathways with significant enrichment are summarized 

in Table 1.

 

Table 1. KEGG pathway enrichment analysis for genes significantly associated with MT-CYB variants and/or 

expression. A total of 3,382 transcripts were identified as differentially expressed between HGSC and control samples. 

Among these, 1,890 genes showed significant correlation with MT-CYB genetic variation and/or its expression (FDR-

adjusted p < 0.005). These genes were analyzed for pathway enrichment, revealing significant involvement in energy 

metabolism, cancer-related pathways, neurodegenerative disorders, and other cellular processes (FDR-adjusted p < 0.01). 

KEGG ID Pathway Description Pathway Category 
Adjusted 

p-value 

Enrichment 

Fold 

hsa00190 Oxidative Phosphorylation Energy Metabolism <0.001 2.84 

hsa05415 Diabetic Cardiomyopathy Cardiovascular Disease <0.001 2.29 

hsa04714 Thermogenesis Environmental Adaptation <0.001 2.17 
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hsa05016 Huntington’s Disease Neurodegenerative Disease 0.001 1.89 

hsa05014 Amyotrophic Lateral Sclerosis Neurodegenerative Disease 0.001 1.80 

hsa05012 Parkinson’s Disease Neurodegenerative Disease 0.001 1.88 

hsa04932 Non-Alcoholic Fatty Liver Disease Endocrine & Metabolic Disease 0.003 2.12 

hsa05020 Prion Disease Neurodegenerative Disease 0.004 1.76 

hsa05208 
Chemical Carcinogenesis – Reactive Oxygen 

Species 
Cancer 0.006 1.81 

hsa05010 Alzheimer’s Disease Neurodegenerative Disease 0.009 1.55 

hsa05022 Multiple Neurodegeneration Pathways Neurodegenerative Disease 0.014 1.46 

hsa00510 N-Glycan Biosynthesis Glycan Biosynthesis & Metabolism 0.017 2.59 

hsa00600 Sphingolipid Metabolism Lipid Metabolism 0.019 2.54 

hsa04723 Retrograde Endocannabinoid Signaling Nervous System 0.020 1.84 

The pathway with the highest enrichment was oxidative 

phosphorylation (OXPHOS), a central component of 

cellular energy metabolism. This pathway involves a 

series of enzymes that oxidize nutrients to generate energy 

in the form of adenosine triphosphate (ATP). OXPHOS 

comprises five protein complexes (I–V) and occurs within 

the mitochondria (Figure 3). 

 

 
Figure 3. Overview of the oxidative phosphorylation (OXPHOS) pathway. Identified as the most enriched pathway in our 

analysis (FDR-adjusted p < 0.001), OXPHOS is illustrated in the upper panel adapted from KEGG (with permission), 

showing complexes I–IV embedded in the mitochondrial membrane. The lower panel provides a more detailed breakdown 

of pathway components. Components highlighted in red indicate those significantly associated with both MT-CYB variants 

and gene expression. Complex I (NADH dehydrogenase) transfers electrons from NADH while actively pumping protons 

across the inner mitochondrial membrane. Complex II (succinate dehydrogenase) channels electrons from succinate but 

does not directly contribute to proton transport. Complex III (ubiquinol-cytochrome c reductase, bc1 complex) shuttles 

electrons from ubiquinone and simultaneously pumps protons. Complex IV (cytochrome c oxidase) transfers electrons 

from cytochrome c to molecular oxygen, forming water and continuing proton translocation. ATP synthase (Complex V) 

harnesses the proton gradient generated by the electron transport chain to produce ATP from ADP and inorganic phosphate. 

 

 

Development and evaluation of the predictive model 

The five mtDNA single nucleotide variants identified 

during the discovery phase via multivariable regression 

were used to construct predictive models on two different 

platforms: (1) LASSO regression implemented in R 

(v4.4.1) (Figures 4a and 4b) and (2) MATLAB 
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(vR2023b) (Figures 4c and 4d). Using the University of 

Iowa dataset, the LASSO-based model achieved an AUC 

of 0.91 (95% CI: 0.82–1.00) (Figure 4a), whereas the 

MATLAB model reached an AUC of 0.95 (95% CI: 0.87–

1.00) (Figure 4e). The slightly higher AUC in the 

validation phase compared to the initial discovery dataset 

(Figure 1b) reflects that these analyses were performed 

using preselected variants from the same dataset. 

 

 

 

 

 
 

a) b) c) d) 

 
 

e) f) 

 

 

 
 

g) h) i) j) 

Figure 4. Model training, validation, and testing. (a) The LASSO model for predicting HGSC was validated on UI data 

using only five key mtDNA variants, achieving an AUC of 91% (CI: 82–100%). (b) The odds ratios of variants in the 

LASSO model indicate increased risk for HGSC when OR >1 and protective effects when OR <1. (c) ROC curve of the 

model tested on TCGA data using the pROC package. (d) Model performance on TCGA data, optimized for 0.9 sensitivity, 

reached an AUC of 0.57 (CI: 0.53–0.62). (e) Validation in UI data with MATLAB, using efficient logistic regression, 

shows the confusion matrix (left) and ROC curve (right), yielding an AUC of 0.95. (f) Testing on TCGA data produced a 

confusion matrix (left) and ROC curve (right) with an AUC of 0.71. (g) Correlation analysis of the MT-CYB variant with 

differential gene expression in HGSC versus controls indicated moderate agreement between UI and TCGA data (AUC = 

0.68, CI: 0.66–0.71). (h) A 2 × 2 matrix from Figure 4g illustrates that 1370 genes were shared between UI and TCGA 

datasets. (i) Correlation of MT-CYB expression with gene expression revealed moderate concordance between the datasets 

(AUC = 0.63, CI: 0.58–0.69). (j) The 2 × 2 matrix for Figure 4i shows 303 genes common to both datasets. 

After extracting and processing WES data from TCGA 

HGSC samples, the same five mtDNA variants used in the 

trained UI model were selected for testing. Using the 

LASSO model with TCGA data and pROC (v1.18.5) 

resulted in an AUC of 0.57 (CI: 0.53–0.62; (Figure 4d)). 

MATLAB-based testing on TCGA achieved better 

performance, with an AUC of 0.71 (95% CI: 0.53–0.88), 

partially overlapping the CIs from the UI validation 

(Figure 4f). 

Validation of correlation analysis 

RNAseq data from TCGA HGSC samples were processed. 

Of the 3382 genes differentially expressed between HGSC 

and controls, 2716 transcripts were available in TCGA 

(423 samples). Among 1728 genes correlated with MT-

CYB variation in the UI dataset, 1370 transcripts were 

present in TCGA, showing fair agreement (AUC = 0.68, 

CI: 0.66–0.71, (Figure 4g)), with 936 genes (68.3%) 

showing correlations in the same direction (r > 0 positive 
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or r < 0 negative; (Figure 4h)). From 364 genes 

significantly correlated with MT-CYB expression in UI, 

303 were represented in TCGA, with lower concordance 

(AUC = 0.63, CI: 0.58–0.69, (Figure 4i)) and 111 genes 

(36.6%) showing directional agreement (Figure 4j). 

This pilot investigation aimed to identify mitochondrial 

genetic variations capable of distinguishing HGSC from 

normal tubal tissue. WES analyses revealed mtDNA 

variants that were used to build predictive models. A 

model incorporating five SNVs from distinct 

mitochondrial genes achieved an AUC of 0.88 (95% CI: 

0.74–1.00). Validation across different analytical 

platforms using UI data yielded consistent results (AUCs: 

0.91 and 0.95). When evaluated on TCGA samples with 

alternative machine learning approaches, AUCs reached 

up to 0.71 (95% CI: 0.53–0.88), partially overlapping the 

initial model’s CI. While performance is fair [15] and 

insufficient alone for clinical diagnostics, integration with 

additional predictive models [16–18] could enhance 

ovarian cancer prediction. Reduced performance in TCGA 

testing may be influenced by the origin of control samples, 

which were taken from the same patients’ normal tissues 

rather than independent normal tubes as in UI. The effect 

of control source on model accuracy is unclear, especially 

given mtDNA’s tendency for spontaneous mutations in 

normal tissue. Differences in genetic substructure between 

TCGA and UI populations may also affect model 

performance [19]. Comprehensive comparisons require 

variant analyses across large, diverse populations with 

similar genetic backgrounds. 

The ovarian cancer prediction model relied on five 

mtDNA single-nucleotide variants (SNVs), with the MT-

CYB variant notably increasing the likelihood of HGSC 

by more than 30%. Expression analysis revealed a 

significant downregulation of MT-CYB in HGSC samples 

relative to controls, a pattern that remained consistent even 

after accounting for other mitochondrial genes in 

multivariable models. Importantly, MT-CYB alterations 

were confined to tumor tissues, suggesting its strong 

potential as a predictive marker for ovarian cancer. 

Examination of TCGA datasets showed that under 10% of 

control samples carried the MT-CYB variant, and in more 

than half of these, the mutation appeared both in the tumor 

and matched normal tissue. Cytochrome b, encoded by 

MT-CYB, is the only mtDNA-derived component of 

Complex III (ubiquinol:cytochrome c oxidoreductase), 

which resides in the inner mitochondrial membrane and 

functions as the second enzyme in oxidative 

phosphorylation, transferring electrons from ubiquinol to 

cytochrome c and driving proton translocation across the 

membrane. This highly conserved, hydrophobic protein 

contains two heme groups [20, 21]. MT-CYB mutations 

have been previously linked to ovarian carcinoma [22] and 

are believed to reprogram mitochondrial metabolism, 

elevating reactive oxygen species (ROS) production 

within tumor cells [23], potentially facilitating adaptation 

to hypoxic microenvironments [24]. Consistent with this, 

mtDNA mutations accumulate progressively from primary 

ovarian lesions to metastases, indicating the presence of 

driver mutations that may confer metastatic advantage 

[22]. 

Another notable variant in the predictive model was 

located in MT-ATP8, a mitochondrial gene recently 

detected in plasma and exosomes from highly aggressive 

lung cancers, highlighting its potential for liquid biopsy 

applications [25]. mtDNA is particularly prone to ROS-

induced mutations even in normal tissue, giving rise to 

multiple coexisting mtDNA variants—a condition termed 

heteroplasmy [26]. Heteroplasmy refers to the presence of 

two or more mtDNA types within the same cell, which can 

occur in both normal and tumor tissues and vary between 

cells. Consequently, up to 72% of tumor-associated 

mtDNA variants are also observed in germline cells of 

healthy individuals [27]. This phenomenon underpinned 

our decision to include all variants in the ovarian cancer 

model, irrespective of origin, allowing the model to select 

variants most predictive of disease. 

Multiple classes of mtDNA alterations are clinically 

relevant in tumorigenesis [28]. Both somatic and germline 

mtDNA mutations have been implicated in a variety of 

cancers, including renal, colon, head and neck, pancreatic, 

breast, ovarian, prostate, and bladder cancers [28, 29]. In 

prostate cancer, the overall mtDNA variant burden may 

serve as an indicator of tumorigenicity [30]. Variants in 

MT-CO1, for example, appear protective against ovarian 

cancer, consistent with observations in our study [31]. 

Although the functional impacts of many mtDNA variants 

remain unclear, analyses integrating mtDNA and nuclear 

DNA (nDNA) co-expression have consistently 

highlighted OXPHOS pathways as the most enriched 

across several cancer types [32]. In line with this, 

OXPHOS was the top-enriched pathway in our study when 

comparing HGSC tissues to normal fallopian tubes. 

Furthermore, genes associated with mtDNA variation 

were involved in diverse biological functions: some 

influence neurotransmitter oxidation at the outer 

mitochondrial membrane (MAOA), potentially affecting 

behavior [33]; others encode tumor-related proteins 

(CHIC1) [34]; and some maintain cellular homeostasis, 

such as GPR89A, which regulates intracellular pH [35]. 

Comparing gene expression profiles between normal 

fallopian tubes and HGSC samples appears to be the most 

reliable strategy for uncovering functional consequences 

of mtDNA variations, rather than using other normal 

tissues from the genital tract [36]. Unlike nuclear DNA, 

mitochondria harbor multiple copies of mtDNA, with 

replication, transcription, and translation regulated by both 

mitochondrial-encoded rRNAs and tRNAs and nDNA-
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encoded proteins, allowing adaptation to environmental 

stressors [37]. Cancer cells can exploit these regulatory 

mechanisms to gain survival advantages, and 

understanding these processes could guide the 

development of targeted therapies [38]. The tumor 

microenvironment may also influence mitochondrial gene 

expression, as suggested by several studies [38]. In our 

analyses, some of the top transcripts linked to mtDNA 

variation corresponded to long non-coding RNAs 

(lncRNAs) and microRNAs implicated in epigenetic 

regulation across multiple cancers, including MIR4423, 

AC010280.1, AC010280.3, AL121839.2, and 

AC078883.2 [39–43]. Despite these findings, substantial 

gaps remain regarding how such alterations affect specific 

cancers in particular contexts. Additionally, 

numtogenesis—the integration of mtDNA sequences into 

nDNA—is activated in certain cancers, such as colorectal 

tumors, and may impact prognosis [44]. Although the 

precise mechanisms are not fully understood, mtDNA 

insertions within tumor suppressor genes could disrupt 

cellular pathways and promote oncogenesis [44], 

highlighting how subtle mitochondrial changes can 

profoundly influence nuclear function and cancer 

progression. 

Circulating tumor DNA (ctDNA) and cell-free DNA 

(cfDNA) can be reliably isolated from the blood of ovarian 

cancer patients, and tumor-specific alterations have been 

detected in peripheral blood [45–48]. The identification of 

tumor-derived genetic changes in blood, termed liquid 

biopsy, has been applied in several cancers for 

individualized treatment, monitoring, and early detection, 

with colorectal and lung cancers recently receiving FDA 

approval [49, 50]. Since ctDNA is detectable in early-stage 

ovarian cancer, and our model predicts ovarian cancer 

with good accuracy, it could serve as an effective tool for 

early diagnosis. Moreover, this approach may allow 

detection of recurrent or persistent disease following 

adjuvant therapy, although the predictive model may 

require modification to account for mutations present in 

recurrent tumors. For clinical application in early-stage 

ovarian cancer, the prediction model would need to be 

prospectively validated in independent cohorts and 

include samples representing diverse disease stages to 

capture the full spectrum of genetic variation. 

A major strength of this study is the use of WES to detect 

mtDNA variants in both HGSC patients and healthy 

controls without family history of ovarian cancer. Variant 

analyses followed recommended genome sequencing best 

practices, including validation, and model testing 

incorporated sufficient cases and controls from the TCGA 

HGSC dataset, all matching the tumor histology of the 

initial cohort. Multiple analytical platforms were 

employed to validate the prediction model, achieving 

acceptable performance levels. 

However, limitations include the relatively small sample 

size, which may restrict the diversity of mtDNA variants 

and exclude potentially discriminative mutations, and may 

also widen the 95% CI for AUC, potentially inflating 

model performance. Additionally, the cohort lacked racial 

diversity, with only one of 20 ovarian cancer patients 

being Black and the remainder White (one unknown), 

limiting generalizability. To fully realize the potential of 

liquid biopsy-based mtDNA prediction, additional studies 

incorporating larger, racially diverse populations and 

multiple disease stages are necessary. Including other 

biomarkers, such as CA125, clinical parameters, or 

additional genomic data, could further enhance model 

performance. Prior work has demonstrated that integrating 

clinical, pathological, and genomic information improves 

prediction accuracy for chemotherapy response in ovarian 

cancer [2, 51, 52]. Ultimately, robust prediction models for 

ovarian cancer will require prospective multi-institutional 

validation to capture population variability and to establish 

their utility in early detection, following the precedent set 

by breast cancer studies [14]. 

Conclusion 

This pilot, retrospective study identifies a set of mtDNA 

variations capable of distinguishing HGSC with strong 

performance. These findings represent a potential 

foundation for developing serum-based detection tools for 

ovarian cancer, including early-stage disease. 

Furthermore, the predictive model highlights links 

between HGSC-associated mtDNA variants and genes 

involved in OXPHOS pathways, suggesting broader 

implications for cellular metabolic and biological 

functions. 

Materials and Methods 

We conducted a single-center, retrospective, case–control 

pilot study utilizing tumor specimens collected during 

cytoreductive surgery from 112 patients with HGSC 

(cases), compared against benign fallopian tube specimens 

from 14 women undergoing surgery for non-malignant 

conditions (controls). DNA and RNA were extracted from 

all samples. Whole-exome sequencing (WES) was 

performed on 20 HGSC cases and all 14 controls, while 

RNA sequencing (RNAseq) was carried out on 112 HGSC 

cases and 12 control fallopian tube samples. 

Specimen collection 

HGSC tumor samples and associated clinical data were 

obtained from the Department of Obstetrics and 

Gynecology and Gynecologic Oncology Biobank (IRB, 

ID#200209010), part of the Women’s Health Tissue 
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Repository (WHTR, IRB, ID#201804817). All specimens 

were originally collected with written informed consent 

from adult patients under University of Iowa IRB 

guidelines. Tumor samples were reviewed by a board-

certified pathologist, flash-frozen, and diagnosis was 

confirmed on paraffin-embedded sections from the time of 

surgery. All experimental protocols were approved by the 

University of Iowa Biomedical IRB-01. 

Fallopian tube specimens were obtained from women 

undergoing gynecologic procedures for benign 

indications, primarily sterilization, with no significant 

cancer history aside from occasional skin squamous cell 

carcinoma. Fallopian tubes were selected as controls 

because they represent the most likely site of origin for 

HGSC [53–55], a strategy previously validated in ovarian 

cancer research [16]. DNA and RNA were isolated from 

the epithelial layer at the junction of the ampullary and 

fimbriated ends. Of the 20 normal fallopian tube samples 

collected, 12 yielded sufficient RNA for sequencing. RNA 

from both HGSC and control specimens had been 

previously extracted and purified [56], and WES was 

successfully performed on 14 fallopian tube specimens. 

DNA sequencing 

Genomic DNA (gDNA) was extracted from frozen tumor 

and fallopian tube tissues using the DNeasy Blood and 

Tissue Kit (QIAGEN, Hilden, Germany) following the 

manufacturer’s instructions. DNA yield and purity were 

evaluated via NanoDrop Model 2000 spectrophotometry 

and horizontal agarose gel electrophoresis. Whole-exome 

sequencing was outsourced to GeneWiz (Azenta, 

Chelmsford, MA, USA). Libraries were prepared with the 

Agilent SureSelect Human Exome Library V5 kit and 

sequenced on an Illumina HiSeq 2000 platform (2 × 150 

bp) to an average depth of 100×. Raw reads were aligned 

to the human reference genome (hg38) using the Burrows–

Wheeler Aligner [57]. Across samples, the mean Phred 

quality score was 37.76, and 89.96% of bases had a quality 

≥30. Coverage analysis was conducted using GATK 

v4.6.1.0, and sequencing quality control was performed 

with FastQC v0.12.1. 

RNA sequencing 

Total RNA was extracted from HGSC and control 

specimens stored in the Biobank. The RNA isolation, 

processing, and sequencing workflow has been described 

previously [51, 58]. Briefly, RNA was purified using the 

mirVana kit (Thermo Fisher, Waltham, MA, USA), with 

quality assessed by Trinean Dropsense 16 

spectrophotometry and Agilent 2100 Bioanalyzer. 

Samples with RNA integrity number (RIN) ≥7 were 

deemed suitable for sequencing. A total of 500 ng of RNA 

per sample was quantified using Qubit (Thermo Fisher), 

converted to cDNA, and ligated with sequencing adaptors 

using the Illumina TriSeq stranded total RNA library 

preparation kit (Illumina, San Diego, CA, USA). 

Sequencing was performed on an Illumina HiSeq 4000 

platform using 150 bp paired-end sequencing by synthesis 

(SBS) chemistry at the Genome Facility of the University 

of Iowa Institute of Human Genetics (IIHG). 

Analysis of single nucleotide variations (SNVs) 

WES-derived DNA sequences were aligned to the human 

mitochondrial reference sequence (Revised Cambridge 

Reference Sequence [rCRS], GenBank NC_012920, 

https://www.mitomap.org/MITOMAP/HumanMitoSeq, 

accessed 20 December 2024) using BWA (v0.7.17-r1188). 

The resulting BAM files were processed with samtools 

(v1.19.2) [59], Picard toolkit (v2.27.1), and GATK 

(v4.6.1.0) [60] to generate Variant Call Format (VCF) files 

for downstream analyses, following recommended best 

practices in genome sequencing [61]. A comprehensive 

table of identified SNVs across all samples was compiled 

for subsequent analyses. 

To determine which mitochondrial SNVs were most 

predictive of HGSC, multivariable LASSO regression was 

performed using the glmnet R package (v4.1-8). Internal 

validation was conducted via k-fold cross-validation, and 

the regularization parameter (λ) was optimized using 

bootstrapping to reduce overfitting in the context of a 

limited sample size [62]. Model performance was 

evaluated using the area under the receiver operating 

characteristic curve (AUC) with 95% confidence intervals 

(CI), where 0.5 indicates no predictive power and 1.0 

represents perfect discrimination. Because LASSO 

prioritizes feature selection rather than inference, variable-

specific confidence intervals were estimated using the 

selectiveInference R package (v1.2.5), recognizing 

potential limitations due to overfitting. 

Correlating mtDNA variants with gene expression 

and pathway enrichment 

RNAseq reads were aligned to the human reference 

genome (hg38) using STAR (v2.7.11b) [63], generating 

BAM files for downstream quantification. Gene 

expression levels were computed with featureCounts [64] 

and normalized using DESeq2 (v1.38.3) [65], including 

log2 transformation. Gene annotation and variant 

identification were performed with ENSEMBL. 

Univariable analyses were conducted for all 37 

mitochondrial genes harboring sequence variants to 

compare HGSC and control groups. Genes with adjusted 

p-values < 0.05 were included in multivariable logistic 

regression to identify those independently associated with 

HGSC (p < 0.05). Whole-genome differential expression 

analysis employed a stricter false discovery rate (FDR)-

adjusted alpha threshold of 0.005. 

Spearman’s rank correlation was used to examine 

relationships between mtDNA SNVs and gene expression, 
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acknowledging that these variables are not fully 

independent. Statistical significance was assessed via p-

values and corrected for multiple comparisons using FDR 

[66]. Genes showing significant correlation with mtDNA 

variants were subjected to pathway enrichment analysis 

using clusterProfiler (v4.3.3) [67], interrogating KEGG 

pathways (https://www.genome.jp/kegg/pathway.html, 

accessed 17 December 2024). Only pathways with FDR-

corrected p-values < 0.05 were considered significant. 

Prediction model evaluation 

Validation using TCGA dataset 

The HGSC TCGA cohort was employed to test the 

predictive model. Access to controlled WES data was 

granted via the Genomic Data Commons Data Portal 

(dbGaP# 29868). WES data from 448 HGSC tumors and 

190 matched normal controls were processed using BWA, 

samtools, Picard (v2.27.1), and GATK (v4.6.1.0) to 

identify SNVs and generate VCF files. Informative 

mtDNA SNVs identified from the UI prediction model 

were located within the TCGA dataset to test the model’s 

predictive performance. The glmnet R package (v4.1-8) 

was used to rebuild the model using the most informative 

SNVs, and pROC (v1.18.5) was applied to assess 

performance in this independent dataset. 

RNAseq BAM files from 423 TCGA HGSC samples were 

also downloaded. Gene expression was extracted using 

STAR and featureCounts (v2.0.6), and genes previously 

identified as significantly correlated in the UI dataset were 

examined for associations with MT-CYB SNVs and 

expression changes. Normal tube gene expression from the 

UI dataset served as controls, and all data were normalized 

and log2-transformed. Correlation between SNVs and 

gene expression in TCGA was performed using 

Spearman’s rank test, with FDR correction applied for 

multiple comparisons [66]. 

Testing on an independent analytical platform 

The HGSC prediction model was further evaluated using 

MATLAB (v2024b) machine learning tools, employing 

the classification learner with over 30 different classifier 

algorithms. The UI-trained model, including only the most 

informative SNVs, was initially trained and validated. The 

same SNVs from the TCGA dataset were then input into 

MATLAB to test the model across this independent 

analytical platform. Testing accounted for outcome 

weighting and class imbalance due to the smaller number 

of controls relative to cases. 
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