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Abstract 

As wearable devices become more widespread and technologically advanced, verifying their 

accuracy is critical to ensure they provide reliable data for practical use. This study investigated 

how accurately the Garmin fēnix 6 estimates VO2max and measures blood oxygen saturation 

(BOS) via pulse oximetry in a general population sample. The study included healthy adults, 

both physically active and sedentary, for VO2max testing (n = 19) and pulse oximetry 

assessment (n = 22). VO2max values from the fēnix 6 were compared to a gold-standard 

metabolic system using a graded exercise test and outdoor running. BOS readings from the 

device under normal and low-oxygen conditions were compared against a clinical-grade pulse 

oximeter. Analyses included descriptive statistics, error evaluation, correlation assessment, 

equivalence testing, and bias evaluation, with validation benchmarks defined as a concordance 

correlation coefficient (CCC) > 0.7 and mean absolute percentage error (MAPE) < 10%. 

VO2max estimates from the fēnix 6 aligned closely with laboratory measurements (30 s average 

MAPE = 7.05%; Lin’s CCC = 0.73), whereas BOS readings were unreliable under all conditions 

tested (combined conditions MAPE = 4.29%; Lin’s CCC = 0.10). The Garmin fēnix 6 provides 

reasonably accurate VO2max estimates, suggesting usefulness for fitness tracking and research 

purposes, but its BOS measurements are insufficiently precise for clinical or altitude monitoring. 

These results emphasize the necessity of validating wearable devices before relying on them for 

health or research applications. 
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Introduction 

Wearable technology has experienced rapid growth, 

becoming one of the most popular tools for health and 

fitness monitoring worldwide, topping global fitness trend 

surveys in seven of the past nine years and ranking in the 

top three for the other two years (2018 and 2021) [1–9]. 

Nearly a third of Americans currently use wearable 

devices to track exercise and health metrics, and 

approximately 70% report owning or planning to acquire 

a device in the near future [10, 11]. This widespread 

adoption presents a unique opportunity for physiology and 

public health research, as these devices can generate large 

volumes of continuous, individualized physiological data, 

offering unprecedented insight into human health patterns 

[12, 13]. However, the accuracy of these consumer-grade 

devices is not guaranteed, as they are unregulated, making 

independent validation essential for ensuring their 

reliability for both research and personal use. 

Among the physiological variables wearable devices can 

monitor, VO2max and blood oxygen saturation (BOS) are 

especially relevant. VO2max represents the maximum rate 

at which oxygen can be delivered to and utilized by the 

body for energy production, serving as a key indicator of 
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cardiorespiratory fitness (CRF) and being strongly 

associated with reduced risk of cardiovascular disease and 

overall mortality [14–16]. VO2max is also a critical 

determinant of endurance performance in athletes [17–19]. 

Pulse oximeters estimate BOS non-invasively by 

measuring the oxygen bound to hemoglobin through light 

absorption, providing valuable information on 

cardiopulmonary function, which is useful for individuals 

with pulmonary conditions or athletes monitoring altitude 

acclimatization [20, 21]. Given the growing reliance on 

wearables for health monitoring and performance 

tracking, this study aimed to evaluate the accuracy of 

VO2max and BOS measurements obtained from the 

Garmin fēnix 6 in a general population cohort. 

Materials and Methods 

Prior to beginning the study, all procedures were approved 

by the University of Nevada, Las Vegas Institutional 

Review Board (IRB). Participants provided written 

informed consent and completed pre-assessment 

questionnaires before any testing. VO2max and pulse 

oximetry measurements were conducted separately, 

though some individuals participated in both assessments 

and were included in each dataset. Since the participant 

groups differed between VO2max and pulse oximetry 

testing, demographic information is reported separately 

for each cohort. 

VO2max testing 

Nineteen apparently healthy adults (self-reported as 

healthy at the time of testing), including both physically 

active and sedentary individuals, were recruited for 

VO2max assessment (mean age 25.50 ± 5.26 years; 11 

males, 8 females; height 173.63 ± 9.08 cm; body mass 

74.08 ± 14.16 kg; BMI 24.42 ± 3.21 kg/m²; fat mass 22.14 

± 6.06%; muscle mass 36.87 ± 4.58%; weekly running 

distance 25.07 ± 23.65 km; all mean ± SD). Data collection 

occurred over two sessions. 

During the first session, participants completed a graded 

exercise test with incremental increases in speed and 

incline to determine VO2max. Maximal oxygen uptake 

was measured using the ParvoMedics TrueOne 2400 

metabolic cart (ParvoMedics Inc., Salt Lake City, UT, 

USA). VO2max was defined as the highest averaged 

oxygen consumption over specific intervals, with 

aggregated values calculated for 4-breath, 15-s, 30-s, and 

1-min averages, which served as the reference 

measurements for device comparison. 

The second session involved an outdoor run guided by the 

Garmin fēnix 6® (Garmin Ltd., Olathe, KS, USA) to 

estimate VO2max. The fēnix 6 is a robust multisport GPS 

smartwatch designed for outdoor and athletic use, 

integrating features of a fitness tracker, smartwatch, and 

navigation device. Participants returned between two and 

seven days after the first session (mean 5.06 ± 3.96 days). 

Before each trial, the watch was reset to factory settings to 

prevent carryover data from previous participants. A 

Garmin HRM-Run® heart rate monitor was worn during 

the run. Participants ran for 10–15 minutes at an intensity 

above 70% of their estimated maximal heart rate, as 

recommended by the manufacturer, allowing the device to 

calculate VO2max through linear extrapolation of heart 

rate and running speed [22]. Runs were conducted either 

on the university track (n = 5) or on flat campus terrain (n 

= 14). The altitude during testing was ~686 m, with an 

average outdoor temperature of 20.67 ± 12.62 °C. Device-

recorded average run parameters were: distance 2.13 ± 

0.17 km, duration 12.91 ± 1.42 min, pace 6.33 ± 1.49 

min/km, and heart rate 153.50 ± 11.45 bpm. Data 

collection spanned approximately 14 months, with runs 

performed at various times of day. 

Pulse oximetry testing 

Twenty-two apparently healthy adults participated in pulse 

oximetry assessment (mean age 25.48 ± 6.02 years; 13 

males, 9 females; height 173.27 ± 7.70 cm; body mass 

68.88 ± 9.10 kg; BMI 22.91 ± 2.40 kg/m²; fat mass 18.55 

± 7.05%; muscle mass 38.73 ± 3.61%). Participants wore 

the fēnix 6 on the left wrist, with strap tension adjusted for 

comfort. A medical-grade fingertip pulse oximeter 

(Roscoe Medical, POX-ROS, Roscoe Medical Inc., 

Middleburg Heights, OH, USA) was placed on the right 

index finger. 

Participants completed eight trials across four conditions 

(two trials per condition): normoxia with watch on 

posterior and anterior wrist, and hypoxia with watch on 

posterior and anterior wrist. For hypoxic testing, 

participants were exposed to simulated altitude using a 

Hypoxico Everest Summit II chamber (Hypoxico Inc., 

New York, NY, USA) set to 3657.6 m (12,000 ft). If 

participants experienced discomfort, the altitude was 

lowered, followed by a five-minute stabilization period 

before resuming. Participants remained seated throughout 

all trials, maintaining controlled breathing synchronized 

with the chamber’s air bursts at a rate of 12.5 breaths per 

minute. Hypoxic exposure averaged 9.18 ± 1.05 minutes. 

If the fēnix 6 failed to generate a BOS reading, up to three 

attempts were made; if unsuccessful, no further attempts 

were conducted. Data from both devices were collected 

simultaneously and testing concluded once all values were 

recorded. 

Data analysis 

VO2max (4-breath, 15-s, 30-s, 1-min averages) and BOS 

measurements (anterior/posterior placement, 

normoxia/hypoxia) were entered into Google Sheets 

(Alphabet Inc., Mountain View, CA, USA). Pulse 

oximetry values were analyzed by condition and 
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combined. All calculations were performed within Google 

Sheets, while summary statistics, validation measures, and 

figures were generated in jamovi (version 2.6.19, 

https://www.jamovi.org/). Analyses included descriptive 

statistics, mean absolute percentage error (MAPE), 

correlation analysis (Pearson’s r and Lin’s concordance 

correlation coefficient [CCC]), equivalence testing via 

TOST paired samples, and Bland–Altman bias 

assessment. TOST equivalence bounds were set at ±0.5 

Cohen’s D. VO2max validation was determined by 

comparing fēnix 6 estimates to each laboratory-aggregated 

interval, with CCC > 0.7 and MAPE < 10% considered 

valid. 

Results and Discussion 

VO2max 

For the 19 participants, mean VO2max was 48.9 

mL/kg/min, with an average VO2max percentile of 83.37 

± 21.14% based on 30-s averaged values. Error analysis 

indicated that fēnix 6 VO2max estimates yielded MAPE 

values below 10% for the 15-s, 30-s, and 1-min intervals 

(Table 1). Correlation analysis produced CCC values > 

0.7 for both 15-s and 30-s averages (Table 1). TOST 

equivalence testing did not indicate equivalence for any 

intervals, with 4-breath, 15-s, 30-s, and 1-min averages all 

violating equivalence criteria (Table 1). Bland–Altman 

bias values and 95% confidence intervals are reported in 

Table 1, with corresponding plots in Figure 1 for all 

timeframes. 

  

a) b) 

  

c) d) 

Figure 1. Bland–Altman plots comparing VO2max measurements from the Garmin fēnix 6 to laboratory reference values: 

4-s average (top left), 15-s average (top right), 30-s average (bottom left), and 1-min average (bottom right). The blue line 

indicates the proportional bias, with shaded areas representing its 95% confidence intervals. The X-axis shows the mean 

of the paired measurements, and the Y-axis shows the difference between them. Dashed lines denote the mean bias (middle 

line) and the upper and lower limits of agreement, while the solid line represents a hypothetical mean bias of zero. 

 

Table 1. VO2max descriptive and validation statistics results, n = 20. Notes: MAPE = mean absolute percentage error; 

TOST test = two one-sided t-tests. Bland–Altman bias values and 95% confidence intervals are provided. Values that met 

the predetermined validation criteria are bolded. 

 
Fēnix 6 VO2max 

Estimate 

Lab VO2max—4 

Breath Avg 

Lab VO2max—15 

s Avg 

Lab VO2max—30 

s Avg 

Lab VO2max—1 

min Avg 

Mean (mL/kg/min) 49.68 54.54 49.95 48.94 47.91 

Standard Deviation 4.61 7.28 7.04 6.67 6.76 
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MAPE  10.70% 7.23% 7.05% 8.53% 

Pearson Correlation  0.73 0.78 0.78 0.76 

Lin’s Concordance  0.49 0.71 0.73 0.68 

Bland–Altman Bias  
−4.87 

(−7.30, −2.44) 

−0.26 

(−2.45, 1.92) 

0.75 

(−1.28, 2.78) 

1.77 

(−0.35, 3.89) 

TOST Test (Upper)  <0.001 0.80 0.45 0.10 

TOST Test (Lower)  <0.972 0.01 0.09 0.34 

Pulse oximetry 

Error analysis indicated that the fēnix 6 produced a mean 

absolute percentage error (MAPE) below 10% across all 

four testing conditions and the combined dataset 

(anterior/posterior placement, normoxia/hypoxia). 

However, correlation analysis revealed that Lin’s 

concordance correlation coefficient (CCC) did not exceed 

0.7 for any individual condition or the combined data. 

Equivalence testing using the TOST method failed for all 

single conditions but was satisfied when analyzing the 

combined dataset. Bland–Altman bias values and 95 

percent confidence intervals for the combined dataset are 

reported in Table 2. Corresponding plots for the combined 

dataset are shown in Figure 2. Out of all attempts, the 

fēnix 6 successfully generated 52 BOS measurements, 

corresponding to an overall success rate of 59%, meaning 

that it provided a reading in just over half of the prompted 

measurements. 

 
Figure 2. Bland–Altman plots of combined pulse 

oximetry measurements, including both normoxic and 

hypoxic conditions. The blue line indicates the 

proportional bias, with shaded areas representing its 

95% confidence intervals. The X-axis shows the 

average of the paired measurements, while the Y-axis 

represents the difference between them. Dashed lines 

indicate the mean bias (center line) and the upper and 

lower limits of agreement, and the solid line represents 

a hypothetical mean bias of zero. 

 

Table 2. Blood oxygen saturation measurements measured via pulse oximetry in Garmin fēnix 6 and criterion device. 

Descriptive and validation statistics results for n = 22 (52 distinct fēnix 6 values from all conditions and participants). Bland–

Altman bias values and 95% confidence intervals are provided. Values that met the predetermined validation criteria are 

bolded. 

 
Fēnix 6 Blood Oxygen Saturation 

Measurement (%) 

Criterion: Blood Oxygen Saturation Measurement 

(%) 

Mean 95.44% 92.06% 

Standard Deviation 1.60% 8.17% 

MAPE  4.29% 

Pearson Correlation  0.18 

Lin’s Concordance  0.10 

Bland–Altman Bias  1.12 

(−0.34, 2.57)   

TOST Test (Upper)  0.13 

TOST Test (Lower)  0.02 

 

This study evaluated the accuracy of VO2max estimates 

and blood oxygen saturation (BOS) measurements from 

wearable technology (WT) against established gold-

standard methods. Based on pre-defined validation 

criteria, the Garmin fēnix 6 demonstrated acceptable 

accuracy for VO2max estimation (MAPE < 10%, CCC > 

0.7), particularly aligning with the 15-s and 30-s averaged 

laboratory timeframes. In contrast, BOS measurements via 

the fēnix 6 failed to meet accuracy standards under any 

condition or in combined analyses. It is important to 

emphasize that these devices are consumer-grade and not 

designed or regulated as medical instruments, meaning 

their accuracy and effectiveness are not governed by the 

FDA or other regulatory bodies. VO2max and pulse 
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oximetry are clinically significant metrics, used to monitor 

general health, cardiorespiratory fitness (CRF), and to 

assess risk in individuals with cardiovascular or 

pulmonary conditions. While some researchers and 

clinicians may use WT for monitoring these metrics in 

clinical populations, these devices were not originally 

intended for such applications. Nevertheless, WT is 

increasingly employed by scientists, healthcare 

professionals, and public health authorities to collect data 

for research, policy development, and healthcare 

monitoring [23–29], underscoring the need for 

independent validation to assess reliability relative to 

gold-standard measurements. The widespread adoption 

and continuous monitoring capability of WT could 

transform public health and physiology research, making 

validation essential for the scientific community [12, 13]. 

VO2max estimation in wearable devices is possible 

because of the well-established linear relationship 

between heart rate (HR) and oxygen consumption [22]. 

The fēnix 6 uses HR and running speed to extrapolate 

VO2max to an age-predicted maximal HR. While the 

device can measure HR using its built-in 

photoplethysmography (PPG) sensor, the current study 

employed an accessory chest strap with ECG technology, 

which provides more accurate HR readings during 

exercise. PPG sensors are susceptible to motion artifacts 

and are generally less precise than ECG-based monitors 

during dynamic activity [30–34]. Thus, using ECG-based 

HR monitoring during exercise, as implemented here, 

enhances the reliability of VO2max estimates. 

Although WT represents a convenient method for 

monitoring physiological metrics like VO2max, field-

based maximal and submaximal VO2max tests have been 

in use for decades [35]. Meta-analyses comparing 

submaximal predictive equations with gold-standard 

testing report correlation coefficients ranging from r = 

0.57 to 0.92 [36]. In this study, the fēnix 6 produced an r 

= 0.78 for both the 15-s and 30-s intervals. Previous 

research on the Garmin fēnix 3 has reported correlations 

up to 0.92 [37], comparable to the most accurate 

submaximal predictive equations. While correlation alone 

does not fully capture a device’s validity, reliability, or 

overall accuracy, it offers a useful comparative measure. 

Accurate VO2max estimation is clinically and practically 

valuable, as it reflects CRF—a robust independent 

predictor of all-cause and disease-specific mortality [14–

16]. Individuals with lower VO2max values are at 

increased risk of mortality regardless of other health 

indicators. The American Heart Association emphasizes 

the importance of CRF measurement in clinical practice, 

citing extensive evidence that CRF is often a stronger 

predictor of mortality than traditional risk factors such as 

smoking, hypertension, hyperlipidemia, and diabetes 

mellitus. Integrating CRF into risk models can improve the 

precision of health risk assessments [38]. Ideally, CRF 

assessment involves maximal exercise testing with direct 

measurement of oxygen consumption and carbon dioxide 

production using a metabolic cart; however, this is not 

feasible for all individuals, particularly those with 

cardiovascular, musculoskeletal, or pulmonary 

limitations, or those unable to afford laboratory testing. 

Wearable devices offer an accessible alternative, 

estimating VO2max during light exercise or even at rest, 

depending on the device. Consequently, accurate VO2max 

estimates from wearables can inform personal fitness 

decisions and provide valuable population-level insights 

for researchers and public health policymakers. 

Given the results of this study, the fēnix 6 provides reliable 

VO2max estimates, suggesting that recreational users and 

possibly researchers, healthcare providers, and public 

health officials can rely on the data generated by this 

device. Nonetheless, professionals may wish to adopt 

stricter validation thresholds than those applied in the 

present investigation to ensure higher confidence in 

VO2max measurements. 

Beyond its relevance for personal health, VO2max is a 

critical performance indicator for endurance athletes, often 

regarded as one of the most important—or even the single 

most important—determinants of endurance event success 

[17–19]. Knowledge of an athlete’s VO2max allows 

coaches and athletes to design training programs tailored 

to individual fitness levels, optimizing performance 

outcomes. However, gold-standard VO2max testing is 

costly and time-intensive, making it impractical for many 

recreational athletes or sports teams. Wearable technology 

offers a cost-effective alternative, enabling both 

individuals and teams to estimate aerobic capacity during 

routine training sessions without the need for dedicated 

testing days. Moreover, continuous monitoring through 

these devices allows training adjustments to be made in 

response to small changes in aerobic fitness, enhancing 

training efficiency and personalization. 

Pulse oximetry, a well-established clinical method for 

assessing blood oxygen saturation (BOS), has recently 

been incorporated into wearable devices such as 

smartwatches. These devices use photoplethysmography 

(PPG) sensors to detect changes in blood oxygen levels by 

emitting light pulses and measuring the reflected signals. 

This technology has potential clinical and athletic 

applications, including monitoring pulmonary health in 

conditions such as asthma, emphysema, and chronic 

obstructive pulmonary disease (COPD). For athletes 

traveling to higher altitudes, wearable pulse oximetry 

could assist in tracking acclimatization [39]. However, as 

demonstrated in the present study, the fēnix 6 performed 

poorly under both normoxic and hypoxic conditions. 

Future research could explore whether continuous BOS 

monitoring throughout the day, rather than on-demand 
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measurements, improves accuracy. Nevertheless, motion 

artifacts inherent to PPG sensors remain a significant 

limitation, with studies showing that oxygen desaturation 

readings can drop below 50% during movement [40]. 

Given these limitations, this device is currently unsuitable 

for precise BOS monitoring during altitude 

acclimatization. 

In the current study, commonly accepted thresholds of 

MAPE < 10% and CCC > 0.7 were used to define validity. 

While no universal consensus exists regarding validation 

thresholds or analytical methods, these criteria were 

considered appropriate for a general population sample. 

However, applications in elite athletics, public health 

research, or clinical settings may require more 

conservative thresholds to ensure higher accuracy. A 

tiered threshold system could be developed in the future to 

guide appropriate use cases for wearable devices. 

Although MAPE and CCC were the primary metrics for 

validity in this study, additional analyses including Bland–

Altman bias assessment and TOST equivalence testing 

were also performed. While these approaches are 

recommended in validation literature [13, 41, 42], they are 

not commonly used, and standardized thresholds for these 

tests have not yet been established. Their inclusion 

provides readers with a more comprehensive evaluation of 

device performance, even though they were not 

incorporated into the strict validity criteria. 

Limitations 

This study included both active and sedentary participants 

from the general population, so caution is warranted when 

generalizing these findings to other groups. Although the 

validation thresholds applied (MAPE < 10% and CCC > 

0.7) have been used in prior research, they may be too 

lenient for contexts that demand high precision, such as 

elite sports, public health studies, or clinical applications. 

As only acute hypoxia was assessed, further research is 

needed to evaluate the device’s accuracy and utility in 

monitoring blood oxygen saturation over time. 

Additionally, VO2max measurements were conducted 

outdoors, where temperature variations could influence 

heart rate during exercise and act as a confounding factor; 

however, the collection of data over approximately 14 

months enhances the external validity and generalizability 

of the findings. 

Conclusion 

This study assessed the accuracy of the Garmin fēnix 6 in 

estimating VO2max and measuring blood oxygen 

saturation via pulse oximetry, comparing results to 

laboratory gold-standard methods. The fēnix 6 

demonstrated acceptable accuracy for VO2max, 

particularly when using 15-second and 30-second 

aggregated data. Conversely, it did not provide reliable 

blood oxygen measurements under any condition or in 

combined analyses. Therefore, while the fēnix 6 can offer 

reasonably accurate VO2max estimates when laboratory 

testing is unavailable, it cannot be relied upon to 

accurately measure blood oxygen levels, regardless of 

normoxic or hypoxic conditions or watch placement on the 

wrist. 
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