Bulletin of
Pioneering
Researches of

Medical and
Clinical Science

Bulletin of Pioneering Researches of Medical and Clinical Science

Available online: https://bprmcs.com
2025 | Volume 4 | Issue 1 | Page: 137-151

FKBPS Gene Polymorphisms and Insomnia Symptoms During
Depressive Episodes in Stress-Related Bipolar Disorder

Katherine Sagredo-Olivares!, Paula Riquelme Bravo?*"

'Department of Psychiatry, Faculty of Medicine, School of Medicine, Universidad de Valparaiso, Valparaiso 2360002,
Chile.
2 Center for Translational Studies in Stress and Mental Health (C-ESTRES), Faculty of Sciences, Universidad de
Valparaiso, Valparaiso 2360102, Chile.
3 Program of Human Genetics, Biomedical Science Institute, Universidad de Chile, Independencia 8380453, Chile.

Abstract

Stress-related bipolar disorder (BP) is shaped by intricate interactions among genetic, Keywords: Stress, Depressive
environmental, and clinical factors. Although the FKBPS5 gene functions as a central modulator episode, Bipolar disorder, Insomnia,
of the stress response and has been linked to several mood disorders, its potential involvement  pgpgps gene variants

in insomnia during depressive episodes of BP remains insufficiently explored. This study aimed
to examine the association between FKBPS5 gene variants and insomnia symptoms emerging
during depressive episodes in BP. The study enrolled 347 individuals diagnosed with BP (42%
male, 58% female), of whom 78% experienced insomnia symptoms. Diagnostic assessments
were conducted using the SCID and OPCRIT instruments, while eight FKBPS single nucleotide
polymorphisms (SNPs) were genotyped through the TagMan method. Participants were divided
according to the presence or absence of a significant stressor preceding their first mood episode.
Statistical analyses, including ANCOVA and Chi-square tests with pairwise post hoc
comparisons, were performed using Statistica 13.3 and R software. Functional characterization
of variants with significant associations was carried out via Ensembl VEP, RegulomeDB,
HaploReg, and SNPnexus. The FKBPS rs755658 variant showed a potential link with insomnia
symptoms among participants with prior stress exposure, where CT/CC genotypes were more
frequently associated with insomnia (p = 0.03; BH-adjusted p = 0.22, below the 0.25 threshold)
compared to the TT genotype. Additionally, seven other FKBP5 polymorphisms displayed
significant associations with BP subtypes in participants without identifiable stressors,
suggesting a genetic component independent of environmental triggers. Functional prediction
analysis indicated that rs755658 may influence transcriptional activity, transcription factor
binding, and post-transcriptional gene regulation. The results suggest that FKBP5 genetic
variants could modulate vulnerability to insomnia in stress-affected individuals during
depressive episodes of BP, underscoring their potential contribution to stress regulation
pathways. Given the exploratory scope of this research, replication in larger, independent Received: 12 April 2025
samples is necessary. Future investigations should focus on the molecular mechanisms and  Revised: 21 June 2025
potential clinical implications for personalized treatment approaches. Accepted: 24 June 2025
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Introduction

FKBP prolyl isomerase 5 (FKBP5) is a 51-kDa
immunophilin protein that regulates glucocorticoid
receptor (GR) sensitivity through its interaction with the
steroid receptor complex. Its activity is influenced by
genetic polymorphisms, environmental stressors, and
epigenetic modifications [1-3]. Variations in the FKBP5
gene affect stress reactivity by modulating the
hypothalamic—pituitary—adrenal (HPA) axis, altering the
GR’s responsiveness to cortisol—the principal stress
hormone—and thereby shaping individual susceptibility
to stress-related and mood disorders [4-13]. Numerous
studies have reported associations between FKBPS5
polymorphisms and affective disorders, particularly in the
context of maladaptive stress regulation [14-16].
Insomnia frequently accompanies depressive, anxiety, and
adjustment disorders [17-19]. However, findings
regarding the relationship between FKBPS5 variants and
bipolar disorder (BP) remain inconsistent. These
discrepancies may arise from differences in allele
frequencies across populations, ethnic diversity, and
gene—environment interactions, all of which contribute to
BP heterogeneity and complicate genetic interpretations.
The diverse clinical manifestations of BP—spanning
depressive and manic episodes—further obscure the
genetic contribution of FKBP5 to the disorder. For
example, Willour ef al. [20] proposed that FKBPS5 variants
may influence the number of depressive episodes in BP,
whereas Szczepankiewicz et al. [21] found no significant
relationship between FKBPS5 polymorphisms and BP but
did observe associations with major depressive disorder.
Similarly, another study linked the FKBP5 rs3800373
polymorphism to the depressed subtype of BP [22]. Since
depressive episodes tend to impair daily functioning more
severely than manic phases, they substantially increase the
overall burden of the illness [23, 24].

Insomnia, a prevalent sleep disturbance, is characterized
by difficulty initiating or maintaining sleep—manifesting
as broken sleep, early morning awakening (often seen in
melancholic depression), or non-restorative sleep—and
can present either as an independent condition or as a
symptom secondary to psychiatric disorders [25, 26]. It
may be classified as a symptom, a normal variant, or a
clinical disorder (acute, chronic, or comorbid with
medical, psychiatric, or substance-related conditions)
[27]. According to the Diagnostic and Statistical Manual
of Mental Disorders, Fifth Edition (DSM-5), insomnia is
defined as a disorder only when it warrants separate
clinical attention and cannot be fully explained by another
underlying condition [28]. Poon et al. [29] describe
insomnia symptoms as difficulty falling asleep, frequent
awakenings, early rising, daytime fatigue, and impaired
functioning, though diagnostic criteria vary slightly across
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classification systems. Sleep disturbance has been shown
to exacerbate the course of BP, contributing to mood
instability, psychotic symptoms, and increased treatment
resistance, while also intensifying emotional distress and
stress reactivity [30, 31].

Genetic factors have been implicated in sleep regulation
within BP. For instance, in a Polish cohort, associations
were identified between three FKBPS5 polymorphisms
(rs1360780, rs7748266, and 1s9296158), one ACPI
variant (rs300774), and one glucocorticoid-induced
transcript 1 (GLCCI1) variant (rs37972) with lithium
treatment response [4]. Moreover, FKBP5 polymorphisms
have been linked to disrupted human sleep architecture
and may contribute to sleep disturbance vulnerability [32].
Experimental evidence supports this role, as FKBP5-
deficient mice exhibit enhanced stress resilience and
improved sleep, emphasizing the gene’s involvement in
both stress regulation and sleep homeostasis [33].

Despite  extensive research  connecting FKBPS
polymorphisms with stress regulation, mood disorders,
and sleep disturbances, the potential relationship between
FKBPS5 variants and insomnia symptoms specifically
within stress-related BP remains unexplored. The present
study addresses this gap by investigating whether FKBP5
polymorphisms are associated with insomnia symptoms
during depressive episodes of BP, and whether these
associations differ depending on exposure to stressors.
Understanding this relationship may clarify the
contribution of FKBPS to sleep pathology in BP and the
moderating role of stress.

This research offers a novel perspective by focusing on
FKBPS single-nucleotide polymorphisms (SNPs) within a
gene—environment interaction framework. Unlike recent
large-scale genome-wide association studies (GWAS)
such as that by Watanabe et al. [34], which identified 554
insomnia-related loci across more than 2.3 million
individuals without implicating FKBPS, this targeted
approach centers on a biologically plausible candidate
gene with established relevance to stress pathways. By
stratifying participants based on stress exposure and
clinically defined insomnia symptoms, this study captures
phenotype-specific associations that broad population-
based GWAS may overlook. Such an approach enhances
understanding of subtype-specific mechanisms underlying
insomnia in BP and may inform personalized therapeutic
strategies.

In this context, the term stress-related BP refers to cases
in which patients reported a stressor (type unspecified)
preceding the onset of illness. A stressor, as defined by
Halbreich [35], is “any event, situation, or environmental
condition subjectively perceived as having a negative
impact on the individual.” Stressors may be biological
(e.g., infection, microbiota imbalance, nutritional
deficiencies), physical (e.g., temperature fluctuations,
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disrupted light—dark cycles), or psychosocial (e.g.,
aggression, job loss, social isolation). The interaction
between such environmental factors and individual
genetic  predisposition  ultimately influences the
manifestation and course of BP.

Materials and Methods

Participants

The study comprised 347 individuals diagnosed with
bipolar disorder (BP) according to the International
Classification of Diseases, 10th Revision (ICD-10, code
F31: Bipolar affective disorder) and the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition
(DSM-1V) [36]. The sample included 146 males (42%)
and 201 females (58%). Data collection was conducted at
the Department of Psychiatric Genetics, Poznan
University of Medical Sciences (Poland). All participants
were of Polish origin and Caucasian ethnicity.

Measures

Comprehensive clinical information was obtained using
the Structured Clinical Interview for DSM Disorders
(SCID-I) [37]. This included documentation of insomnia
and hypersomnia symptoms observed during depressive
episodes of BP, with additional assessment of melancholic
features.  Sleep-related  variables  were  further
characterized using the Operational Criteria Checklist
(OPCRIT) [38], which records specific sleep symptoms—
initial insomnia, middle insomnia (fragmented sleep),
early morning awakening, and hypersomnia. The OPCRIT
also includes a variable identifying the presence or
absence of a stressor prior to the onset of the first mood
episode. Information regarding stressors was collected
retrospectively and was based on patients’ self-reports.

Genotyping

Genotyping was performed using TaqgMan assays, as
described in previous research from our group [13, 21].
Eight FKBP5 single-nucleotide polymorphisms (SNPs)—
rs1360780, rs755658, rs9470080, rs4713916, rs7748266,
rs9296158, rs9394309, and rs3800373—were selected for
analysis. These variants were chosen based on earlier
findings by Szczepankiewicz et al [21], which
demonstrated significant associations between these
FKBP5 loci and major depressive disorder (MDD).
Although those findings were specific to MDD, the shared
pathophysiological mechanisms between MDD and BP,
particularly the dysregulation of the hypothalamic—
pituitary—adrenal (HPA) axis and the stress response,
justified their inclusion in the present study. Considering
the known role of stress and sleep disturbances in bipolar
depression [39], the present investigation aimed to
determine whether these FKBP5 variants are similarly
linked to insomnia symptoms during depressive episodes
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of BP. Thus, this work extends previous findings to a
related clinical population with overlapping biological
mechanisms.

Statistical analysis
All statistical analyses were performed using Statistica

software version 13.3 (StatSoft, Krakow, Poland) and R
programming language (version 4.4.2) [40], employing
the following packages: dplyr, readxl, ggplot2, tidyr, and
scales [41-45]. Analyses focused on identifying
associations between FKBP5 polymorphisms and
insomnia symptoms. Categorical variables—including
sex, BP subtype (coded as 1 for type I and 2 for type II),
stressor presence, and genotype categories—were
analyzed as factors in all models.

G #Power version 3.1 [46, 47] was used for post hoc power
analysis, employing a two-tailed, two-sample #-test to
evaluate the effect size between BP participants with and
without reported stressors. In studies involving multiple
comparisons, such as those examining genetic
polymorphisms, maintaining a higher statistical power
(90%) is recommended to account for correction
procedures such as Bonferroni or false discovery rate
(FDR) adjustments, which may otherwise obscure true
associations [48-51]. Accordingly, a power level of 0.9
[52] was applied for effect size estimation.

The Hardy—Weinberg equilibrium (HWE) for genotype
distributions was tested using chi-square analyses in R (see
Supplementary Material S1). Associations between
FKBP5 polymorphisms and categorical variables (e.g.,
insomnia symptoms, sex, BP subtype) were assessed using
chi-square tests. Consistent with previous research by
Stramecki et al. [53], analysis of covariance (ANCOVA)
was employed to examine relationships between FKBP5
variants and the continuous variable of age at onset.
Following significant chi-square results, the Benjamini—
Hochberg (BH) procedure was applied with an FDR
threshold of 25%, following the methodological precedent
of Stramecki et al. [54]. Results were considered
significant when the BH-adjusted p-value was below the
0.25 threshold (detailed R script available in
Supplementary Material S1).

The use of a 25% FDR threshold aligns with practices in
exploratory genetic and psychiatric research, balancing the
need to detect meaningful associations against the control
of false positives [55]. This approach is particularly
appropriate for screening analyses aimed at identifying
potential candidate variants for further investigation and is
widely accepted in exploratory biological and psychiatric
studies [54, 56-62].

Post hoc pairwise comparisons of proportions, adjusted
using the BH correction and evaluated against the 25%
FDR threshold, were conducted in cases of significant
two-way interactions among participants reporting stress
exposure (see Supplementary Material S1 for R
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methodology). Pairwise comparisons are appropriate
following omnibus tests such as chi-square, as they allow
identification of specific group differences within
significant overall effects [63].

In silico prediction of variant functionality

The functional impact of significant FKBPS5
polymorphisms was evaluated in silico using multiple
bioinformatics tools, including Ensembl Variant Effect
Predictor (VEP) Cache version 113.0
(https://www.ensembl.org/Homo_sapiens/Tools/VEP),
RegulomeDB version 2.2 (https://regulomedb.org),
HaploReg version 4.2
(https://pubs.broadinstitute.org/mammals/haploreg/haplor
eg.php), and SNPnexus version 4 (https://www.snp-

nexus.org/v4/).
The Ensembl VEP tool annotates and predicts the potential

functional consequences of genomic variants on genes,
transcripts, and protein products [64]. Variants were
analyzed based on the GRCh38.p14 human genome
assembly using Ensembl VEP v113.0, which integrates
data from several major databases, including GENCODE
v47, dbSNP 156, ClinVar (version 202404), and gnomAD
v4.1. VEP evaluates variant consequences in relation to
transcript biotypes, regulatory elements, and co-located
known variants, while functional impact predictions were
derived from SIFT, PolyPhen, CADD, SpliceAl, and
ClinPred.

RegulomeDB was used to assess the potential regulatory
functions of single-nucleotide variants (SNVs) located in
non-coding regions. This tool integrates data from
multiple functional genomic assays such as transcription
factor chromatin immunoprecipitation sequencing (TF
ChIP-seq) and DNase-seq from the ENCODE project,
along with quantitative trait locus (QTL) analyses [65, 66].
Each queried SNV is assigned a regulatory score ranging
from 1 to 7 (with 1 denoting the strongest evidence of
regulatory function) and a model score between 0 and 1
(higher values indicating greater regulatory potential).
RegulomeDB facilitates the interpretation of intronic and
non-coding regulatory variants by mapping them to
transcription factor binding sites, promoters, enhancers,
and methylation regions, thereby providing insight into
their biological relevance [66—68]. The role of non-coding
RNA (ncRNA) was also considered, given its conserved
structure and significant contribution to cellular signaling
and disease regulation [69].

HaploReg was employed to explore the regulatory
potential of non-coding genetic variants by integrating
linkage disequilibrium data with epigenomic profiles,
transcription factor binding, and expression QTL
annotations [70]. In parallel, SNPnexus provided
comprehensive annotation of known and novel genetic
variants, enabling the identification of functionally
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relevant SNPs and small insertions/deletions across
multiple human genome assemblies [71-75].

Ethical considerations
This research was conducted in compliance with the

ethical standards of the 1964 Declaration of Helsinki and
its subsequent amendments. Ethical approval was obtained
from the Bioethics Committee of Poznan University of
Medical Sciences, Poland (Approval No. 1194/16). All
procedures adhered to institutional and international
guidelines for human research. Written informed consent
was obtained from all participants prior to their inclusion
in the study.

Results

Effect size determination
Post hoc power analysis revealed a small-to-moderate

effect size (d = 0.4). According to Cohen’s criteria [76],
this indicates a moderate difference between BP patients
who experienced stressors prior to disease onset and those
without such exposure.

Study population and data presentation
A detailed demographic and clinical characterization of

the study cohort (N = 347) is provided in Table 1.

Table 1. Description of the analysed population
Count (%) or  Empty
Mean (SD) Cell

Empty Cell Empty
Total, n = 347 Cell
Stressor present prior the
onset of BP 204(59%)
Stressor absent prior the
onset of BP 143 @1%)
lnsomm‘fl pres.ent in 271 (78 %)
depressive episode
Insomnia abse.nt in depressive 76 (22 %)
episode
Male 146 (42 %)
Female 201 (58 %)
BP1 263 (76 %)
BP 2 84 (24 %)
Min,
Max
Age of onset, mean (SD) 31(11.3) 10, 59
FKBP5 genotypes distribution in all BP patients
rs1360780
CC 192 (55 %)
CT 134 (39 %)
TT 21 (6 %)
rs755658
CC 284 (82 %)
CT 60 (17 %)
TT 3(1%)
rs9470080
140
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CcC
CT
TT
rs4713916
AA
AG
GG
rs7748266
CC
CT
TT
rs9296158
AA
AG
GG
rs9394309

172 (50 %)
150 (43 %)
25 (7 %)

20 (6 %)
138 (40 %)
189 (54 %)

265 (76 %)
79 (23 %)
3(1%)

23 (7 %)
130 (37 %)
194 (56 %)

AA 184 (53 %)

AG 140 (40 %)

GG 23 (7 %)
rs3800373

AA 203 (59 %)

AC 124 (36 %)

cc 20 (6 %)

Abbreviations: SD - standard deviation; BP — bipolar disorder.

The genotype distributions for the polymorphisms adhered
to Hardy-Weinberg Equilibrium.

A chi-squared test revealed a statistically significant
association between the FKBP5 rs755658 variant and
insomnia symptoms (y*> = 7.17, df = 2, p = 0.03) for BP
individuals with stressors (Table 2).

Table 2. Interactions between the FKBP5 gene polymorphisms and insomnia symptoms

ts.::::i Effect rs1360780 rs755658 rs9470080 rs4713916 rs7748266 rs9296158 rs9394309 rs3800373
xX= v = v= X = v = v = v = X=
Sex 1.17;p= 1.05;p= 0.18; p= 0.51;p= 359 p= 0.84; p= 0.65;p= 0.05;p=
0.558 0.592 0.913 0.773 0.166 0.656 0.722 0.974
Age of B = B B B B F= B
0.63; p= 0.65;p= 1.12; p= 0.85;p= 0.08; p= 0.70; p = 0.55;p= 1.39; p=
Stressor "¢t 0.533 0.526 0.328 0.428 0.921 0.496 0.576 0.254
present BP type 1 X2 = XZ = XZ = X2 — Xz — Xz — Xz — Xz —
and 2 0.40; p = 1.28; p= 0.16; p = 0.19; p= 0.74; p = 0.69; p = 0.89; p= 1.33;p=
0.820 0.528 0.923 0.908 0.690 0.707 0.640 0.513
FKBPS x ©= ©= ©= ©= = = = ©=
insomnia 1.01;p= 117, p= 1.60; p = 0.88; p= 0.73;p= 0.12;p= 1.36;p= 0.79;p=
symptoms 0.605 0.028 0.449 0.644 0.694 0.942 0.507 0.673
2= v= = 2= P = P= P= =
Sex 086;p= 1.05p= 199%p=  08%p= 218p= 078 p=  06}p=  1.69p=
0.652 0.591 0.37 0.649 0.336 0.678 0.731 0.429
Age of - k= B F=< - - k= -
0.08; p= 0.30; p= 0.14; p= 0.0L;p= 037, p= 0.18; p= 0.14; p = 0.08; p=
Stressor "€t 0.927 0.742 0.870 0.996 0.689 0.838 0.868 0.927
absent BP type 1 2= v= v= = P = P = P = 2=
and 2 9.06; p= 1.93;p= 9.86; p= 10.81; p= 714;p = 9.90; p = 10.18; p = 6.56; p=
0.011 0.380 0.007 0.004 0.028 0.007 0.006 0.038
FKBPS x XZ — X2 — X2 — XZ — XZ — X2 — X2 — XZ —
insomnia 1.36; p= 0.68; p= 1.28;p= 3.04; p= 2.90; p = 1.87;p= 377, p= 1.42; p=
symptoms 0.506 0.710 0.526 0.219 0.234 0.392 0.152 0.491
Bolded values indicate statistically significant results.
0.64 0.79 FALSE
After the BH correction, the p value of 0.03 remained 0.69 0.79 FALSE
statistically ~significant, as shown inTable 3 (R 0.94 0.94 FALSE
methodology is available in Supplementary Material S1). 0.51 0.79 FALSE
0.67 0.79 FALSE

Table 3. Multiple testing correction results
for FKBPS5 1s755658 interaction with insomnia
symptoms for participants with stressors.

Raw p values BH adjusted p values Significance

0.60 0.79
0.03 0.22
0.45 0.79

FALSE
TRUE
FALSE

Bull Pioneer Res Med Clin Sci, 2025, 5(1):137-151

Abbreviations: BH - Benjamini-Hochberg.

Following the detection of a statistically significant
association between the FKBP5 rs755658 genotype and
insomnia symptoms using the chi-square test (p = 0.03), a
pairwise comparison of proportions was subsequently
performed. The Benjamini-Hochberg (BH) correction
method was applied with a false discovery rate (FDR)
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threshold of 25% to account for multiple testing (Table 4).
Details of the R analytical procedure are provided in
Supplementary Material S1. The pairwise analysis
revealed statistically significant differences between the
TT and CC genotypes, as well as between the TT and CT
genotypes.

Table 4. Post-hoc pairwise comparison of interaction
between FKBPS5 rs755658 polymorphism and insomnia
symptoms in participants with stressors

Empty Cell Genotype CC CT
1 CT 0.92 -
3 TT 0.21 0.22

Bolded values indicate statistically significant results.

To illustrate the relationship between the FKBP5 rs755658
variant and insomnia symptoms, a jitter (dot) plot was
generated (Figure 1) to visually complement the statistical
findings by highlighting potential genotype-specific
patterns in the occurrence of insomnia. This visualization
displayed individual-level data, allowing for a clear
depiction of the proportion of participants reporting
insomnia symptoms (coded as 1) across different
genotypes. The TT genotype appeared to be less frequent
among participants with insomnia, particularly within the
stress-exposed subgroup, suggesting a possible inverse
relationship. This trend indicates that individuals carrying
the TT genotype may be less susceptible to developing
insomnia symptoms under stress conditions or following

exposure to a stressor.
A. Stressor present

R .
o
wE
8 . &
>
"
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«
c
&
=3
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B. Stressor absent

®om o
. el
pL (-

."“’? :. '{0

Genotype

Figure 1. Jitter/dot plot showing rs755658 genotype
and insomnia symptom interaction. Red dots represent
the mean. Insomnia 0 = absence of insomnia symptoms,
1 = presence of insomnia symptoms

A notable association was also found between BP types 1
and 2 and seven FKBPS5 polymorphisms (rs1360780,
1s9470080, 1s4713916, 137748266, rs9296158, 159394309,
rs3800373) among participants without stress exposure,
all of which remained significant after BH correction, as
presented in Table 5 (details of the R methodology are
provided in Supplementary Material S1).

Table S. Multiple testing correction results
for FKBPS5 1s755658 interaction with BP types for
participants without stressors

Raw p values BH adjusted p values Significance
0.01 0.02 TRUE
0.38 0.38 FALSE
0.01 0.01 TRUE

<0.01 0.01 TRUE
0.03 0.04 TRUE
0.01 0.01 TRUE
0.01 0.01 TRUE
0.04 0.04 TRUE

Abbreviations: BH - Benjamini-Hochberg.
Bolded values indicate statistically significant results.

To illustrate the relationship between FKBPS5 variant
genotypes and BP types, as well as the genotype
distribution among participants with stressors, a facet-
wrapped stacked proportional bar plot was employed
(Figure 2). This visualization highlights the proportion of
each BP type across genotypes and facilitates comparison
of BP type distribution among various SNPs.
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Figure 2. Distribution of bipolar disorder (BP) types across FKBP5 genotypes when stressors are absent (R methodology

is available in Supplementary Material S1)

Figure 3 presents a facet-wrapped proportional bar plot
illustrating the association between FKBPS genotypes and
BP types, along with genotype distribution in participants
without stressors. In most genotypes, Type 1 BP
predominates, accounting for approximately 60-80% of
However, 1s7748266 TT exhibits complete
dominance of Type 2 BP (with the exception of rs755658,
which is expected since it lacks statistical significance),
while rs9296158 AA shows roughly 60% representation

cases.

of Type 2 BP.
100
0,

I 74%
s !
o ‘ BP Type
20 & =
.g 50 | [ BPTypel
3 ‘ B BP Type2
E |

23% | 26%

Stressor Absent Stressor Present

Stressor Condition
Figure 3. Bipolar disorder (BP) type 1 and 2
distribution in participants with and without stressors.
(R methodology is available in Supplementary Material
S1)

Figure 3 shows the distribution of BP types in the overall
population.
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Functional prediction result for FKBP5 rs755658
The rs755658 variant was located within the FKBP5 gene
(ENSG00000096060) and an additional non-coding
transcript (ENSG00000285599) on chromosome 6 at
position 35581893-35581893, GRCh38 (Supplementary
Material S2 Table S1). Functional annotation indicated
that this variant predominantly appears as an intronic
variant in three FKBPS transcripts and as a 3' UTR variant
in one FKBP5 transcript (Figure 4). Moreover, it was
identified as two intron/non-coding transcript variants
within ENSG00000285599 (IncRNA).

@ intron_variant: 63%
® non_coding_transcript_variant: 259
@ 3_prime_UTR_variant: 13%

N

Figure 4. Percentage distribution of the consequence

of FKBP5 rs755658 variant from Variant Effect

Predictor (VEP) result

SpliceAl analysis showed no evidence of splicing
alteration, as all prediction scores were 0.00, indicating
that rs755658 likely does not influence RNA splicing
(Supplementary Material S2 Table S1). Although this
variant is located in an intronic region, it demonstrated an
association with MDD, suggesting it may exert regulatory
effects.

According to RegulomeDB, rs755658 possesses potential
regulatory activity, receiving a score of 0.55 and a rank of
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1f (eQTL/caQTL + TF binding/chromatin accessibility
peak), implying possible involvement in transcriptional
control. In this system, lower scores denote stronger
functional evidence [77]. The variant overlapped with 299
chromatin accessibility peaks, further supporting its
regulatory capacity.

ChIP-seq profiling revealed that rs755658 lies within
transcriptionally active regions across several tissues.
Noteworthy transcription factor binding events were

Immune organ, spleen
Musculature of body, esophagus

Large intestine, colon, intestine

EP300 POLR2A POLR2A POLR2A

«

™

= Bone element, bone marrow l 52
o

&}

<

=

@ Bone element, bone marrow 2.56
=} £
&)

3]

= Brain . 9.06
&}

e

=

B

4

N

0 20

l'imh‘ sl _

observed in the brain (ZNF70, CTCF), bone marrow
(CEBPA), tibial nerve (EP300), and colon (POLR2A),
among others (Supplementary Material S2 Table S2). The
most prominent signal (114.04) occurred in SK-N-SH
neuroblastoma cells for ZNF70 binding (Figure 5),
suggesting strong transcriptional regulation within
neuronal cells—consistent with the established role of
FKBPS in stress response and psychiatric disorders.

94.55

75.69

4348

60 80 100 120

Figure 5. displays a bar chart representing transcription factor binding intensities across various tissues and chromatin
peak regions. Abbreviations: ZNF70 — Zinc Finger Protein 70; CTCF — CCCTC-Binding Factor; CEBPA —
CCAAT/Enhancer Binding Protein Alpha; EP300 — E1A Binding Protein p300; POLR2A — RNA Polymerase II Subunit

A

The rs755658 site overlaps several enhancer elements and
chromatin regions characterized by transcriptional
activity, including both strong and weak enhancer states
(Supplementary Material S2). Expression QTL results
indicated that rs755658 affects the expression of TULPI,
MAPKI13, TEAD3, and RP3-340B19.3, rather than
FKBPS, implying it may act through a trans-regulatory
process. These associations were found in several human
tissues, particularly within brain areas such as the
hypothalamus, frontal cortex, putamen, nucleus
accumbens, anterior cingulate cortex, and Ammon’s horn
(Supplementary Material S2 Table S3).
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According to HaploReg analyses, rs755658 lies within
chromosomal regions enriched with histone modifications
that mark regulatory activity in the brain (Figure 6). Such
epigenetic signatures are typical of enhancer or promoter
regions, suggesting that rs755658 could modulate FKBPS5
expression in a brain-region-dependent manner. This
regulatory pattern may influence neural functions
associated with emotion, cognition, and stress responses,
potentially linking it to sleep disturbances observed in
bipolar disorder [78-83].
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Figure 6. depicts brain regions where the rs755658 SNP is linked to active regulatory chromatin marks. These include
H3K27ac, which indicates active enhancers; H3K4mel, marking poised or active enhancers; H3K9ac, signifying active
promoters; and the 11_TxEnh3 state, representing transcriptionally active enhancer regions

Reactome pathway enrichment analysis via SNPnexus

indicates that rs755658 may play a role in cellular stress and psychiatric conditions, supporting the idea that
responses, MECP2-mediated transcriptional regulation, rs755658 could have functional relevance in stress-related
and nuclear receptor signaling (Figure 7). These pathways disorders [84-86].

are closely connected to mood regulation, neuroplasticity,
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Figure 7. Illustration of the Reactome pathway enrichment of rs755658
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Discussion

This study examined the relationship between FKBPS
polymorphisms and insomnia during depressive episodes
in bipolar disorder (BP). Notably, FKBP5 rs755658
showed a significant association with insomnia symptoms
even after BH correction, suggesting that variations in
FKBP5 may exacerbate sleep disturbances, particularly
under stress. Interestingly, our previous research did not
detect a link between these FKBPS5 polymorphisms and BP
but did find associations with major depressive disorder
(MDD) [21]. Given that MDD has lower heritability
(~40%) compared to BP (~80%) [87, 88], environmental
factors are likely more influential in its onset. This may
explain why Szczepankiewicz et al. [21] reported
associations with MDD but not BP, indicating that stress-
responsive genetic variants such as FKBP5 may play a
more prominent role in conditions where environmental
triggers are critical. In line with this, the current analysis
revealed an association between FKBP5 rs755658 and
insomnia specifically in BP patients who experienced
stressors prior to disease onset.

Our findings suggest that individuals carrying the CT or
CC genotypes of FKBP5 rs755658 may be more
susceptible to insomnia during depressive episodes when
preceded by stress. This aligns with the study by Li ef al.
[89], which identified the CC genotype of FKBPS
rs3800373 and the CT genotype of FKBP5 rs1360780 as
risk factors for sleep disturbances under occupational
stress. These results imply that the C allele may act as a
risk variant, potentially heightening vulnerability to stress-
related insomnia, likely through FKBPS5’s regulatory role
in stress response. Future research should investigate
interactions between FKBPS r1s755658 genotypes,
environmental stressors, and other biological factors to
clarify these mechanisms.

Among BP patients without preceding stressors, our
analysis indicates that FKBP5 polymorphisms may be
linked to BP subtype (Figure 2 and 3), which could, in
turn, influence the likelihood of developing insomnia
symptoms during depressive episodes.

To our knowledge, this is the first study to associate
FKBPS5 15755658 with insomnia symptoms and, more
broadly, with psychiatric manifestations. Functional
studies of this variant are scarce. While rs755658 does not
appear to directly affect RNA splicing, its genomic context
implicates roles in transcription factor binding and post-
transcriptional regulation. Though primarily intronic,
annotations suggest it may carry regulatory potential.
Previous research indicates that over 88% of trait- or
disease-associated variants identified by GWAS are
located in non-coding regions, with 45% in introns, yet the
functional impact of intronic SNVs remains
underexplored [68, 90]. Liao et al. [77] also highlighted
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that genetic variants often influence disease through
regulatory mechanisms rather than coding changes,
affecting elements such as TF binding sites, histone
modifications, DNA  methylation, and DNase
hypersensitivity sites.

In silico predictions additionally identified 3" UTR
variants, which can disrupt miRNA binding, alter mRNA
stability, affect polyadenylation, and influence translation
efficiency, potentially modulating gene expression and
contributing to disease risk [91-96]. Two intron/non-
coding variants in IncRNA were also observed. LncRNAs
regulate diverse cellular processes, including cell cycle
progression, apoptosis, and gene stability [97-100], and
dysregulated or mutated IncRNAs are increasingly
recognized as critical for understanding transcriptional
regulation in brain function [100]. Chromatin state
analysis further positions rs755658 within enhancer-
associated regions, suggesting it may influence FKBP5
transcription in a tissue-specific manner. Considering
FKBP5’s role in stress response and psychiatric disorders,
this variant could contribute to individual differences in
stress-related phenotypes, including insomnia in BP.
Future work should examine the biological pathways
linking FKBP5 rs755658 to insomnia, particularly its
involvement in stress regulation. At present, the NCBI
database indicates that the rs755658 polymorphism occurs
predominantly in FEuropean populations (~81.72%)
(https://www.ncbi.nlm.nih.gov/snp/rs755658),
highlighting  potential  implications for disease
susceptibility, drug response, and personalized healthcare
strategies. This high prevalence underscores the need for
further research to clarify its functional consequences.
Additionally, the observed association between seven
FKBP5 polymorphisms and bipolar subtype in patients
without prior stress exposure is intriguing, but additional
studies are required to understand the implications of this
finding fully.

Limitations

Several factors may limit the interpretation of our findings.
First, stress exposure was based on self-reports, and no
detailed data on the type, duration, or intensity of stress
were collected, making the results vulnerable to recall or
reporting bias. Second, the study examined only eight
FKBP5 polymorphisms, which may not reflect the full
genetic variability of the gene, potentially restricting the
scope of our conclusions. Third, the modest sample size
may reduce statistical power and limit generalizability.
Additionally, insomnia was assessed as a symptom rather
than through formal clinical diagnosis, and standardized
sleep assessment tools, such as the Pittsburgh Sleep
Quality Index (PSQI) [101] or the Insomnia Severity Index
(IST) [102], were not used. Finally, conclusions regarding
the TT genotype are based on only three individuals,
making these results preliminary and in need of
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replication. Despite these constraints, this work provides
valuable insight into a relatively unexplored area, as few
studies have addressed the connection between FKBPS
polymorphisms and insomnia during depressive episodes
in BP, emphasizing the novelty of our findings.

Conclusion

This study highlights a potential link between FKBPS5
genetic variation and insomnia during depressive episodes
in stress-sensitive bipolar disorder. The rs755658
polymorphism emerged as significantly associated with
insomnia, suggesting it may influence vulnerability to
sleep disturbances under stress. Individuals carrying the
CT or CC genotypes who experienced stress prior to
disease onset were at higher risk, whereas the TT genotype
appeared to be less frequently associated with insomnia.
Computational predictions indicate that rs755658 may
have regulatory effects on transcription factor binding,
enhancer activity, and gene expression, although
experimental confirmation is needed. These results
underscore the interplay between genetic predisposition,
environmental stressors, and psychiatric symptoms.
Further research is required to clarify the mechanisms
through which FKBPS5 rs755658 contributes to insomnia
and to explore its role in depressive subtypes of BP. A
better understanding of this relationship could help guide
future interventions aimed at alleviating stress-related
sleep disturbances in bipolar disorder.
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