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Abstract 

Immune checkpoint inhibitor therapy has emerged as a highly promising approach for cancer 
treatment by targeting inhibitory pathways that suppress T cell cytotoxic activity. Recent 
landmark clinical trials have shown that immune checkpoint blockade (ICB) can induce durable 
anti-tumor responses with manageable toxicity, leading to the approval of eight checkpoint 
inhibitors across 15 different cancer types. Nevertheless, a significant proportion of patients—
up to approximately 85%—exhibit either primary or acquired resistance, which constrains the 
broad effectiveness of ICB. Existing biomarkers for predicting response, such as tumor 
mutational burden, neoantigen load, immune cell profiles, and programmed death-ligand 1 (PD-
L1) expression, provide only limited predictive power. Consequently, discovering novel 
biomarkers that more accurately identify patients likely to benefit from ICB represents a critical 
focus in immunotherapy research. Aberrant DNA methylation (5mC) and hydroxymethylation 
(5hmC) have been observed in various cancers, and dynamic epigenomic changes occur during 
T cell differentiation and activation. Although their precise contribution to cancer-induced 
immune suppression remains unclear, emerging evidence indicates that 5mC and 5hmC may 
function as prognostic and predictive biomarkers for ICB-responsive tumors. This review 
discusses the influence of epigenetic mechanisms on tumor immunoediting and immune 
evasion, provides an updated overview of current ICB response biomarkers, and highlights 
promising epigenomic candidates with potential predictive value. 
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Introduction 

Immunotherapy represents a transformative advancement 
in the management of cancer. Among these strategies, 
therapies targeting programmed death-1 (PD-1)/PD-L1 
and cytotoxic T-lymphocyte-associated protein 4 (CTLA-
4) have rapidly become the most widely utilized class of 
anticancer drugs [1]. Recent research has highlighted that 

modulation of immune checkpoint receptor (ICR) 
expression on T cell surfaces is a pivotal mechanism by 
which tumors evade immune surveillance [2]. ICRs 
include both co-stimulatory molecules, such as CD27, 
CD28, and CD137, and co-inhibitory receptors, including 
PD-1, CTLA-4, and lymphocyte activation gene-3 (LAG-
3), which collectively regulate the strength and quality of 
T cell responses [3]. Current immune checkpoint blockade 
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(ICB) therapies primarily target the PD-1/PD-L1 and 
CTLA-4 pathways to enhance anti-tumor immunity, 
showing significant clinical benefit [4]. The binding of 
PD-1 on cytotoxic T lymphocytes to PD-L1 on tumor cells 
suppresses T cell activity through multiple mechanisms, 
such as inhibition of downstream T cell receptor signaling 
[5,6], promotion of regulatory T cell activity [7], and 
suppression of B cell and natural killer cell functions [8]. 
CTLA-4, another critical ICR, inhibits T cell activation by 
outcompeting the co-stimulatory receptor CD28 [9]. 
Blocking PD-1 and CTLA-4 reinvigorates anti-tumor 
immunity by expanding exhausted tumor-infiltrating 
CD8+ T cells; additionally, CTLA-4 inhibition rescues 
Th1-like CD4+ effector T cells, enhances CD8+ T cell 
infiltration and cytotoxicity, and promotes memory T cell 
formation [10]. 
ICB has demonstrated efficacy in multiple immunogenic 
cancers, including melanoma and non-small-cell lung 
cancer (NSCLC). Regulatory authorities, including the 
U.S. Food and Drug Administration (FDA) and European 
Medicines Agency (EMA), have approved ICB agents for 
a variety of cancers, such as melanoma, NSCLC, renal cell 
carcinoma, head and neck squamous cell carcinoma, 
Hodgkin’s lymphoma, urothelial carcinoma, gastric 

cancer, cervical cancer, hepatocellular carcinoma, primary 
mediastinal large B-cell lymphoma, microsatellite 
instability-high/deficient mismatch repair cancers, and 
Merkel cell carcinoma. Notably, in 2019, first-line anti-
PD-1 therapy received approval for patients with stage III 
NSCLC who were ineligible for surgery or definitive 
chemoradiation, exhibited metastasis, or harbored wild-
type epidermal growth factor receptor (EGFR) and 
anaplastic lymphoma kinase (ALK) status with positive 
PD-L1 expression (Table 1). Currently, over 20 clinical 
trials are investigating ICB in novel oncologic contexts 
(Table 2). 
Despite these advances, a substantial proportion of 
patients fail to achieve a meaningful response due to 
primary or acquired resistance [11,12]. Anti-CTLA-4 
therapies have shown the lowest response rates, with 
approximately 85% of patients not benefiting [13–15], 
whereas anti-PD-1 therapies achieve responses in roughly 
40% of cases [16, 17]. Combination therapies offer 
improved response rates of around 50% but are associated 
with increased toxicity [18, 19]. Consequently, the 
identification of reliable biomarkers to predict ICB 
responsiveness remains a critical need in clinical 
oncology. 

 
Table 1. Revised FDA-Approved Immune Checkpoint Inhibitors and Their Indications 

Drug 
Approval 

Date 
Mechanis

m 

Sam
ple 
Size 

Reference Clinical 
Trial 

Cancer 
Type 

Indications 

Ipilimumab 
(YERVOY®) * 

10/28/201
5 

CTLA-4 951 
EORTC 

(NCT00636168) 
Melanoma 

Adjuvant therapy for cutaneous 
melanoma with regional lymph 
node involvement >1 mm after 

complete resection 

Ipilimumab 
(YERVOY®) * 

03/25/201
1 

CTLA-4 676 
MDX010-20 

(NCT00094653) 
Melanoma 

Unresectable or metastatic 
melanoma previously treated 

systemically 

Pembrolizumab 
(KEYTRUDA®) * 

09/04/201
4 

PD-1 173 
KEYNOTE-001 
(NCT01295827) 

Melanoma 

Unresectable or metastatic 
melanoma progressing after 

ipilimumab and, if BRAF V600 
mutation-positive, a BRAF 

inhibitor 

Pembrolizumab 
(KEYTRUDA®) * 

12/18/201
5 

PD-1 
834
+54

0 

KEYNOTE-006 
(NCT01866319); 
KEYNOTE-002 
(NCT01704287) 

Melanoma 
Unresectable or metastatic 

melanoma 

Nivolumab + 
Ipilimumab 

(OPDIVO® + 
YERVOY®) * 

09/30/201
5 

PD-1, 
CTLA-4 

142 
CheckMate-069 
(NCT01927419) 

Melanoma 
BRAF V600 wild-type 

unresectable or metastatic 
melanoma 

Nivolumab 
(OPDIVO®) * 

12/22/201
4 

PD-1 120 
CheckMate-037 
(NCT01721746) 

Melanoma 

Unresectable or metastatic 
melanoma progressing after 

ipilimumab and, if BRAF V600 
mutation-positive, a BRAF 

inhibitor 

Pembrolizumab 
(KEYTRUDA®) * 

02/15/201
9 

PD-1 
101
9 

KEYNOTE-054 
(NCT02362594) 

Melanoma 
Melanoma with lymph node 
involvement after complete 

resection 
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Nivolumab 
(OPDIVO®) * 

12/20/201
7 

PD-1 906 
CheckMate-238 
(NCT02388906) 

Melanoma 
Adjuvant therapy for advanced 

melanoma 
Nivolumab + 
Ipilimumab 

(OPDIVO® + 
YERVOY®) 

04/16/201
8 

PD-1, 
CTLA-4 

847 
CheckMate-214 
(NCT02231749) 

Hepatocell
ular 

carcinoma 

Intermediate or poor-risk 
advanced hepatocellular 

carcinoma without prior treatment 

Pembrolizumab 
(KEYTRUDA®) 

11/09/201
8 

PD-1 104 
KEYNOTE-224 
(NCT02702414) 

Hepatocell
ular 

carcinoma 

Hepatocellular carcinoma 
previously treated with sorafenib 

Nivolumab 
(OPDIVO®) 

09/22/201
7 

PD-1 154 
CheckMate-040 
(NCT01658878) 

Hepatocell
ular 

carcinoma 

Hepatocellular carcinoma 
previously treated with sorafenib 

Pembrolizumab 
(KEYTRUDA®) * 

03/15/201
7 

PD-1 210 
KEYNOTE-087 
(NCT02453594) 

Lymphom
a 

Refractory classical Hodgkin 
lymphoma or relapsed after ≥3 

prior therapies 

Nivolumab 
(OPDIVO®) * 

05/17/201
6 

PD-1 95 

CheckMate-205 
(NCT02181738); 
CheckMate-039 
(NCT01592370) 

Lymphom
a 

Recurrent Hodgkin lymphoma 
after autologous stem cell 

transplant and post-transplant 
brentuximab vedotin 

Pembrolizumab 
(KEYTRUDA®) 

06/13/201
8 

PD-1 53 
KEYNOTE-170 
(NCT02576990) 

Lymphom
a 

Refractory primary mediastinal 
large B-cell lymphoma or relapsed 

after ≥2 prior therapies 

Cemiplimab-rwlc 
(LIBTAYO®) * 

09/28/201
8 

PD-1 108 

R2810-ONC-1423 
(NCT02383212); 
R2810-ONC-1540 
(NCT02760498) 

Cutaneous 
squamous 

cell 
carcinoma 

Metastatic or locally advanced 
cutaneous squamous cell 

carcinoma not eligible for curative 
surgery or radiation 

Pembrolizumab 
(KEYTRUDA®) * 

08/05/201
6 

PD-1 174 
KEYNOTE-012 
(NCT01848834) 

Squamous 
cell 

carcinoma 
of the 

head and 
neck 

Recurrent or metastatic head and 
neck squamous cell carcinoma 

progressing on or after platinum-
based chemotherapy 

Nivolumab 
(OPDIVO®) * 

11/10/201
6 

PD-1 361 
CheckMate-141 
(NCT02105636) 

Squamous 
cell 

carcinoma 
of the 

head and 
neck 

Advanced head and neck 
squamous cell carcinoma 

progressing on or after platinum-
based therapy 

Nivolumab 
(OPDIVO®) 

07/31/201
7 

PD-1 74 
CheckMate-142 
(NCT02060188) 

Colorectal 

Patients ≥12 years with mismatch 
repair-deficient or microsatellite 

instability-high metastatic 
colorectal cancer progressing after 
fluoropyrimidine, oxaliplatin, and 

irinotecan 
Nivolumab + 
Ipilimumab 

(OPDIVO® + 
YERVOY®) 

07/10/201
8 

PD-1, 
CTLA-4 

82 
CheckMate-142 
(NCT02060188) 

Colorectal 
Metastatic colorectal cancer with 
high microsatellite instability or 

mismatch repair deficiency 

Pembrolizumab 
(KEYTRUDA®) 

05/23/201
7 

PD-1 149 

KEYNOTE-016 
(NCT01876511); 
KEYNOTE-164 
(NCT02460198); 
KEYNOTE-012 
(NCT01848834); 
KEYNOTE-028 
(NCT02054806); 
KEYNOTE-158 
(NCT02628067) 

Colorectal 

Unresectable or metastatic 
microsatellite instability-high or 
mismatch repair-deficient solid 

tumors or colorectal cancer 
progressing after 

fluoropyrimidine, oxaliplatin, and 
irinotecan 

Pembrolizumab 
(KEYTRUDA®) 

06/12/201
8 

PD-1 98 
KEYNOTE-158 
(NCT02628067) 

Cervical 
Recurrent or metastatic cervical 

cancer with progression on or after 
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chemotherapy and PD-L1 
expression (FDA-approved test) 

Pembrolizumab 
(KEYTRUDA®) * 

04/11/201
9 

PD-1 
127
4 

KEYNOTE-042 
(NCT02220894) 

Lung 

First-line treatment for stage III or 
metastatic non-small cell lung 
cancer without EGFR or ALK 

aberrations, with PD-L1 
expression (TPS ≥1%) per FDA-

approved test 
Atezolizumab 

(TECENTRIQ®) + 
chemotherapy * 

12/06/201
8 

PD-L1 
120
2 

IMpower150 
(NCT02366143) 

Lung 
Metastatic non-squamous non-
small cell lung cancer without 

EGFR or ALK aberrations 

Atezolizumab 
(TECENTRIQ®) * 

10/18/201
6 

PD-L1 
113
7 

POPLAR 
(NCT01903993); 

OAK 
(NCT02008227) 

Lung 
Metastatic non-small cell lung 

cancer progressing during or after 
platinum-based chemotherapy 

Pembrolizumab 
(KEYTRUDA®) + 

pemetrexed and 
carboplatin * 

05/10/201
7 

PD-1 123 
KEYNOTE-021 
(NCT02039674) 

Lung 
Previously untreated metastatic 

non-squamous non-small cell lung 
cancer 

Nivolumab 
(OPDIVO®) * 

10/09/201
5 

PD-1 582 
CheckMate-057 
(NCT01673867) 

Lung 
Metastatic non-small cell lung 
cancer progressing on or after 
platinum-based chemotherapy 

Pembrolizumab 
(KEYTRUDA®) + 

carboplatin/paclitaxe
l * 

10/30/201
8 

PD-1 559 
KEYNOTE-407 
(NCT02775435) 

Lung 
Metastatic squamous non-small 

cell lung cancer 

Pembrolizumab 
(KEYTRUDA®) * 

10/24/201
6 

PD-1 
305
+10
33 

KEYNOTE-024 
(NCT02142738); 
KEYNOTE-010 
(NCT01905657) 

Lung 
Metastatic non-small cell lung 
cancer with PD-L1 expression 

(FDA-approved test) 

Nivolumab 
(OPDIVO®) * 

03/04/201
5 

PD-1 272 
CheckMate-017 
(NCT01642004) 

Lung 

Metastatic squamous non-small 
cell lung cancer progressing on or 

after platinum-based 
chemotherapy 

Pembrolizumab 
(KEYTRUDA®) + 

pemetrexed and 
platinum * 

08/20/201
8 

PD-1 616 
KEYNOTE-189 
(NCT02578680) 

Lung 
Metastatic non-squamous non-
small cell lung cancer without 

EGFR or ALK aberrations 

Durvalumab 
(IMFINZI®) * 

02/06/201
8 

PD-L1 713 
PACIFIC 

(NCT02125461) 
Lung 

Unresectable stage III non-small 
cell lung cancer without 

progression after concurrent 
platinum-based chemotherapy and 

radiation 

Pembrolizumab 
(KEYTRUDA®) * 

10/02/201
5 

PD-1 61 
KEYNOTE-001 
(NCT01295827) 

Lung 

Metastatic non-small cell lung 
cancer with PD-L1 expression 

(FDA-approved test), progressing 
on or after platinum-based 

chemotherapy 
Atezolizumab 

(TECENTRIQ®) + 
carboplatin and 

etoposide * 

03/18/201
9 

PD-L1 403 
IMpower133 

(NCT02763579) 
Lung 

Extensive-stage small cell lung 
cancer 

Nivolumab 
(OPDIVO®) 

08/16/201
8 

PD-1 109 
CheckMate-032 
(NCT01928394) 

Lung 
Progressive metastatic small cell 
lung cancer after platinum-based 
chemotherapy and other therapies 

Nivolumab 
(OPDIVO®) * 

02/02/201
7 

PD-1 270 
CheckMate-275 
(NCT02387996) 

Urothelial 

Locally advanced or metastatic 
urothelial carcinoma progressing 
during or after platinum-based 

chemotherapy or within 12 months 



Yang et al.  

 

 Bull Pioneer Res Med Clin Sci, 2022, 2(1):41-68 45 
 

of neoadjuvant/adjuvant platinum 
therapy 

Durvalumab 
(IMFINZI®) 

05/01/201
7 

PD-L1 182 
Study 1108 

(NCT01693562) 
Urothelial 

Locally advanced or metastatic 
urothelial carcinoma progressing 
during or after platinum-based 

chemotherapy or within 12 months 
of neoadjuvant/adjuvant platinum 

therapy 

Atezolizumab 
(TECENTRIQ®) * 

05/18/201
6 

PD-L1 310 
IMvigor210 

(NCT02108652) 
Urothelial 

Locally advanced or metastatic 
urothelial carcinoma progressing 
during or after platinum-based 

chemotherapy or within 12 months 
of neoadjuvant/adjuvant platinum 

therapy 

Avelumab 
(BAVENCIO®) 

05/09/201
7 

PD-L1 242 
JAVELIN Solid 

Tumor 
(NCT01772004) 

Urothelial 

Locally advanced or metastatic 
urothelial carcinoma progressing 
during or after platinum-based 

chemotherapy or within 12 months 
of neoadjuvant/adjuvant platinum 

therapy 

Pembrolizumab 
(KEYTRUDA®) * 

05/18/201
7 

PD-1 542 
KEYNOTE-045 
(NCT02256436) 

Urothelial 

Locally advanced or metastatic 
urothelial carcinoma progressing 
during or after platinum-based 

chemotherapy or within 12 months 
of neoadjuvant/adjuvant platinum 

therapy 

Pembrolizumab 
(KEYTRUDA®) 

12/19/201
8 

PD-1 50 
KEYNOTE-017 
(NCT02267603) 

Merkel 
cell 

carcinoma 

Recurrent locally advanced or 
metastatic Merkel cell carcinoma 

Avelumab 
(BAVENCIO®) * 

03/23/201
7 

PD-L1 
173
8 

JAVELIN Merkel 
200 (NCT02155647) 

Merkel 
cell 

carcinoma 
Metastatic Merkel cell carcinoma 

Nivolumab 
(OPDIVO®) * 

11/23/201
5 

PD-1 821 
CheckMate-025 
(NCT01668784) 

Renal 
Advanced renal cell carcinoma 

after prior anti-angiogenic therapy 

Atezolizumab 
(TECENTRIQ®) * 

03/08/201
9 

PD-L1 902 
IMpassion130 

(NCT02425891) 
Breast 

Unresectable locally advanced or 
metastatic triple-negative breast 
cancer with PD-L1 expression 

(≥1% tumor-infiltrating immune 
cells) per FDA-approved test 

Pembrolizumab 
(KEYTRUDA®) 

09/22/201
7 

PD-1 259 
KEYNOTE-059 
(NCT02335411) 

Gastric/ga
stroesopha

geal 
junction 

Recurrent locally advanced or 
metastatic gastric or 

gastroesophageal junction 
adenocarcinoma with PD-L1 

expression (FDA-approved test) 
*Also approved by the European Medicines Agency (EMA) for the same cancer type. 

 
Table 2. Ongoing Clinical Trials of Immune Checkpoint Inhibitors for New Cancer Indications 

Drug 
Targeted 
Immune 

Checkpoint 

Sample 
Size 

Cancer Type Response Rate Phase Trial Number 

Ipilimumab CTLA-4 100 Melanoma (stage III/IV) 10.9% III/IV NCT00094653 
Pembrolizumab PD-1 31 Recurrent Hodgkin Lymphoma 65% I NCT01953692 

Pembrolizumab PD-1 26 
Advanced Locoregional Merkel-

Cell Carcinoma 
56% II NCT02267603 

Nivolumab PD-1 240 
Relapsed or Advanced 

Squamous-Cell Carcinoma 
13.3% III NCT02105636 

Nivolumab PD-1 410 Advanced Renal-Cell Carcinoma 25% III NCT01668784 
Pembrolizumab PD-1 270 Advanced Urothelial Carcinoma 21.1% III NCT02256436 

Pembrolizumab PD-L1 27 
Advanced Triple-Negative Breast 

Cancer 
18.5% I NCT01848834 
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Nivolumab PD-1 39 
Advanced Hepatocellular 

Carcinoma 
23% I/II NCT01658878 

MDX1105-01 
(anti–PD-L1) 

PD-L1 207 

Non-Small-Cell Lung Cancer, 
Melanoma, Colorectal Cancer, 
Renal Cell Carcinoma, Prostate 
Cancer, Ovarian Cancer, Gastric 

Cancer, Breast Cancer 

12.6% I NCT00729664 

Atezolizumab PD-L1 175 
Non-Small-Cell Lung Cancer, 

Renal Cell Carcinoma, 
Melanoma, Other Tumors 

18% I NCT01375842 

Tremelimumab CTLA-4 17 
Advanced Hepatocellular 
Carcinoma with Chronic 

Hepatitis C 
17.6% II NCT01008358 

Avelumab PD-L1 88 
Chemotherapy-Refractory Stage 

IV Merkel Cell Carcinoma 
31.8% II NCT02155647 

Atezolizumab PD-L1 116 
Metastatic Triple-Negative Breast 

Cancer 
9.5% I NCT01375842 

Atezolizumab PD-L1 32 Head and Neck Cancer 22% I NCT01375842 
Atezolizumab PD-L1 95 Metastatic Urothelial Cancer 26% I NCT01375842 

Nivolumab PD-1 296 

Advanced Melanoma, Non-
Small-Cell Lung Cancer, 

Castration-Resistant Prostate 
Cancer, Renal-Cell Cancer, 

Colorectal Cancer 

18% (Non-Small-Cell 
Lung Cancer), 28% 
(Melanoma), 27% 

(Renal-Cell Cancer) 

I NCT01354431 

Pidilizumab PD-1 66 Diffuse Large B-Cell Lymphoma 51% II NCT00532259 
Pidilizumab PD-1 32 Relapsed Follicular Lymphoma 66% II NCT00904722 

Nivolumab PD-1 23 
Relapsed or Refractory 
Hodgkin’s Lymphoma 

87% I NCT01592370 

Lambrolizumab PD-1 135 Advanced Melanoma 38% I NCT01295827 
Nivolumab PD-1 107 Advanced Melanoma 30.8% I NCT00730639 

Nivolumab PD-1 418 
Untreated Melanoma without 

BRAF Mutation 
40.0% III NCT01721772 

Nivolumab PD-1 631 
Advanced Melanoma Progressed 
After Anti-CTLA-4 Treatment 

31.7% III NCT01721746 

Pembrolizumab PD-1 495 Non-Small-Cell Lung Cancer 19.4% I NCT01295827 

Nivolumab PD-1 272 
Advanced Squamous-Cell Non-

Small-Cell Lung Cancer 
20% III NCT01642004 

Nivolumab PD-1 129 
Previously Treated Advanced 
Non-Small-Cell Lung Cancer 

17% I NCT00730639 

Emerging evidence highlights the critical involvement of 
epigenetic modifications, particularly 5-methylcytosine 
(5mC) and 5-hydroxymethylcytosine (5hmC), in cancer 
development [20–22]. Notably, 5mC plays a vital role in 
controlling T cell proliferation and sustaining the 
differentiation of both cytotoxic and helper T cells [23], 
while 5hmC undergoes dynamic alterations during T cell 
maturation [24]. Recent studies have revealed that 5hmC 
deposition in key immune-related genes is instrumental for 
T lymphocyte activation and differentiation following 
antigen presentation, exhibiting more pronounced changes 
than 5mC [25]. Tumor cells, such as those in 
hepatocellular carcinoma, display distinct methylation and 
hydroxymethylation patterns, suggesting the utility of 
these epigenetic marks as diagnostic or prognostic 
biomarkers [26, 27]. Supporting this notion, our recent 
work identified specific DNA methylation patterns, 
termed the “EPIMMUNE” signature, which could be 

reduced to a single CpG site in FOXP1 and were 
associated with clinical benefit in NSCLC patients 
undergoing ICB therapy [28]. In this review, we revisit the 
landscape of ICB biomarkers and critically examine 5mC 
and 5hmC as potential predictive markers for response to 
cancer immunotherapy. 

Induction of Inhibitory Immune Checkpoints as a 
Central Mechanism of Tumor Immune Escape 

The concept of “immunoediting” describes how tumor 
cells evolve under immune pressure, balancing expansion 
with evasion from immune surveillance [29]. Multiple 
factors contribute to this process. The tumor 
microenvironment (TME) itself can exert 
immunosuppressive effects, facilitating tumor progression 
through cytokines, chemokines, and inhibitory molecules 
[30]. For example, VEGFA can increase PD-1 expression 
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on CD8+ T cells, while TGF-β promotes PD-L1 
expression on tumor cells [31, 32]. Tumors characterized 
as “immune-cold” may also prevent effector T cells from 
infiltrating, resulting in poor responsiveness to 
immunotherapy. Furthermore, the TME can recruit 
immunosuppressive cell populations, including regulatory 
T cells, myeloid-derived suppressor cells (MDSCs), and 
tumor-associated macrophages, further impairing immune 
clearance [33–35]. 
Tumors may also evade immune detection by reducing 
neoantigen expression or losing mutant alleles through 
immune pressure-driven selection [36]. Additional 
mechanisms of immune escape include downregulation of 
interferon-γ (IFN-γ) signaling, antigen presentation 
deficits, and impaired immune cell recruitment [37–39]. 
A major contributor to immunosuppression during tumor 
development is the upregulation of inhibitory co-receptors 
(ICRs), which mediate a network of suppressive 
interactions at the tumor–stroma interface and within the 
stroma itself, ultimately leading to T cell exhaustion [12]. 
T cell exhaustion was first described in mice infected with 
certain strains of lymphocytic choriomeningitis virus 
(LCMV) [40], where rapid activation and depletion of 
CD8+ effector T cells enabled viral persistence. Exhausted 
T cells are characterized by high expression of inhibitory 
receptors, impaired effector functions, and reduced 
capacity to form memory T cells [41]. 
Recent studies indicate that T cell exhaustion is similarly 
pivotal in cancer. Chronic antigen exposure drives the co-
expression of multiple inhibitory receptors, such as PD-1, 
CTLA-4, LAG-3, and TIM-3 [42]. The PD-1/PD-L1 axis 
is especially important for suppressing immune responses. 
When co-expressed with TIM-3, PD-1 diminishes 
secretion of pro-inflammatory cytokines, including IL-2, 
IFN-γ, and TNF, leading to T cell tolerance in 
malignancies like acute myelogenous leukemia, colon 
adenocarcinoma, and melanoma [43–45]. CTLA-4 also 
functions as a key inhibitory receptor, acting non-
redundantly with PD-1 to block T cell co-stimulation and 
maintain peripheral tolerance. Dual blockade of CTLA-4 
and PD-1 in models such as B16 melanoma vaccinated 
with B16-Flt3-ligand (Fvax) synergistically enhances the 
ratio of effector to regulatory T cells, increases cytokine-
producing T cells, and triggers inflammatory cascades that 
promote tumor rejection while reducing tumor-induced 
immunosuppression [46]. Given the central role of the PD-
1/PD-L1 and CTLA-4 pathways in cancer immune 
evasion, therapies targeting these checkpoints, alone or in 
combination, have become the cornerstone of ICB-based 
immunotherapy. 

Mechanisms of Clinically Targeted ICR Signaling 
Pathways 

PD-1 signaling 
PD-1 is widely expressed on T cells, B cells, antigen-
presenting cells, natural killer (NK) cells, and 
macrophages [47, 48], and is considered a central 
inhibitory immune checkpoint receptor. Unlike CTLA-4, 
PD-1 primarily functions during the effector phase of 
adaptive immune suppression, impairing the ability of 
cytotoxic T cells to eliminate tumor cells [9]. Engagement 
of PD-1 with its ligand PD-L1 also inhibits CD28 and T 
cell receptor (TCR) signaling, reducing interactions 
between T cells and dendritic cells (DCs) [49, 50]. In 
tumor-associated macrophages, elevated PD-1 expression 
diminishes phagocytic activity [48]. On tumor cells, PD-
L1 expression confers resistance to effector T cell-
mediated cytolysis and lowers expression of granzyme A 
and perforin [51, 52]. Active PD-1 signaling further 
restricts the transition of effector T cells into the memory 
T cell pool through pro-apoptotic mechanisms involving 
BCL-2-interacting mediator of cell death (BIM) [41]. PD-
1 also immobilizes CD4+ and CD8+ T cells during 
exhaustion by stabilizing immunological synapses [53] 
and contributes to suppression of melanoma antigen-
specific cytotoxic T lymphocytes (CTLs) via 
CD4+CD25^Hi regulatory T cells [54]. Clinically, PD-1 
expression in CD8+ T cells has emerged as a biomarker 
identifying tumor-resident reactive T cell populations in 
advanced melanoma and cervical cancer [55, 56]. 

CTLA-4 signaling 
In contrast to the broad distribution of PD-1, cytotoxic T 
lymphocyte-associated antigen 4 (CTLA-4) is 
predominantly expressed on regulatory T cells (Tregs), 
playing a central role in maintaining self-tolerance and 
Treg-mediated immunosuppression [57, 58]. CTLA-4 
suppresses CD28-dependent T cell activation and survival, 
resulting in decreased production of IL-2, IL-4, TNF-α, 
and IFN-γ, along with reduced proliferation of both CD4+ 
and CD8+ T cells [49, 59, 60]. Interaction of CTLA-4 with 
CD80/CD86 on conventional T cells increases their 
susceptibility to Treg-mediated inhibition [61]. 
Additionally, CTLA-4 downregulates CD80/CD86 on 
DCs, impairing antigen priming by limiting physical 
interactions between Tregs and conventional T cells [62]. 
CTLA-4-expressing CD4+ T cells engage with DCs for 
shorter periods than CTLA-4-negative CD4+ T cells, 
which leads to decreased IL-2 production and proliferation 
[63]. Furthermore, CTLA-4 limits follicular helper T cell 
(Tfh) differentiation by modulating the level of CD28 co-
stimulation [64]. 

Molecular Basis of ICB Resistance 

Despite the transformative impact of immune checkpoint 
blockade (ICB) in oncology, many patients either fail to 
respond or eventually acquire resistance [39]. 
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Approximately 9% of patients receiving anti-PD-1/PD-L1 
monotherapy experience hyper-progressive tumor growth 
and poor overall survival [65]. Resistance is often driven 
by intra-tumor heterogeneity, which generates 
molecularly diverse cancer cell subpopulations, some of 
which are inherently insensitive to therapy [66]. As 
sensitive tumor cells are eliminated, resistant clones 
proliferate, driving disease progression. In the context of 
ICB, this heterogeneity is particularly critical because both 
tumor-intrinsic and stromal factors influence therapeutic 
outcomes. Heterogeneity has been documented for key 
modulators of ICB response, including PD-L1 expression 
[67], while neoantigen load and tumor clonality have been 
associated with improved responses to anti-CTLA-4 and 
anti-PD-1 therapies in NSCLC [68]. 

Resistance mechanisms 
A key tumor-intrinsic factor contributing to resistance 
against ICB therapy is a low neoepitope burden, which 
typically results in limited immune reactivation following 
either CTLA-4 or PD-1/PD-L1 blockade [69–72]. 
Interestingly, changes in epitope composition or 
mutational load during ICB treatment have been linked to 
therapeutic response. In NSCLC patients responding to 

anti-PD-1 therapy, reductions in clonal mutation numbers 
and T cell repertoire evenness correlate with clinical 
benefit. On average, patients achieving complete or partial 
responses retained only about 19% of variants, whereas 
those experiencing disease progression retained 
approximately 101% [73]. Tumor immunoediting driven 
by anti-PD-1 or combined anti-PD-1/anti-CTLA-4 
treatment has also been associated with the loss of 
dominant neoantigens in initially responsive patients who 
subsequently develop acquired resistance, indicating 
further tumor evolution toward reduced immunogenicity 
[74]. 
Moreover, several genetic and transcriptomic alterations 
have been proposed as potential predictive biomarkers of 
ICB response (Table 3). Notable oncogenic pathways 
include amplifications in the MDM2 gene family and 
EGFR alterations, which have been linked to hyper-
progressive disease following anti-CTLA-4 or PD-1/PD-
L1 therapy [75]. Additionally, activation of the canonical 
Wnt/β-catenin signaling pathway is associated with a 
“non-T cell inflamed” tumor microenvironment and can 
directly suppress T cell activation, further contributing to 
immune evasion [39, 76]. 

 
Table 3. Potential Response Biomarkers for Immune Checkpoint Blockade 

Biomarker Type Target Cohort Size Predictive Power Assay/Predictive Value 

TCR Repertoire Amount 
and Clonality 

Genetic Immune 25 p = 0.004 

TCR sequencing. In metastatic 
melanoma, high TCR clonality 

correlates with better response to 
pembrolizumab [77]. 

Tumor Neoantigen 
Clonality 

Genetic Tumor 139 

No ITH threshold, HR 
= 0.47, p = 0.025; 
ITH threshold = 0, 
HR = 0.212, p = 

0.019; ITH threshold 
= 0.01, HR = 0.33, p 

= 0.008; ITH 
threshold = 0.05, HR 

= 0.45, p = 0.083 

Whole exome sequencing. In 
melanoma treated with ipilimumab 
or tremelimumab, low neoantigen 

intratumor heterogeneity (ITH) 
and high clonal neoantigen burden 

correlate with improved overall 
survival [68]. 

Tumor Mutational 
Burden (TMB) 

Genetic Tumor 16, 49 
HR = 0.19, p = 0.01; 
HR = 1.38, p = 0.24 

Whole exome sequencing, 
targeted next-generation 

sequencing. High TMB linked to 
clinical benefit [71, 78, 79]. 

ctDNA Genetic Tumor 28 

Progression-free 
survival, HR = 0.29, p 

= 0.03; Overall 
survival, HR = 0.17, p 

= 0.007 

ctDNA level by next-generation 
sequencing. Significant ctDNA 
reduction indicates favorable 

response [80]. 

JAK1, JAK2 Genetic Immune 4 Not specified 

JAK1/JAK2 mutation by whole-
genome sequencing. Mutations 
indicate poor response [37, 39, 

81]. 

β2 Microglobulin (B2M) Genetic Tumor 40, 34 p = 0.009, p = 0.004 
B2M mutation by whole-genome 

sequencing. Mutations predict 
poor response [69]. 
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Germinal SNPs 
−1577G/G and 

CT60G/G in CTLA4 
Genetic Germinal 173 

−1577G>A, OR = 
0.04 and 0.24; 

CT60G>A, OR = 0.07 
and 0.28 

SNPs by genotyping. −1577G>A 
and CT60G>A linked to better 

response [82]. 

BRCA1/2 Genetic Tumor 38 OR = 6.2, p = 0.002 

BRCA2 mutation by whole-
genome sequencing. BRCA2 
mutation predicts favorable 

response [70, 83, 84]. 

KRAS, TP53 Genetic Tumor 
54 

(immunothe
rapy cohort) 

pTP53 mut = 0.042; 
pKRAS mut = 0.003 

TP53 and KRAS mutation by 
whole-genome sequencing. 

Mutations indicate good response 
[85]. 

MDM2, EGFR Genetic Tumor 155 
OR (MDM2) = 10.8; 
OR (EGFR) = 8.36 

Targeted sequencing. 
MDM2/EGFR amplification 
predicts poor response [75]. 

rs17388568 Genetic Germinal 169 OR = 0.26, p = 0.0002 
Genotyping by Sequenom 

MassArray. Associated with 
response [86]. 

FOXP1 BS-5mC Epigenetic Immune 61 

Progression-free 
survival, HR = 0.415, 
p = 0.0063; Overall 

survival, HR = 0.409, 
p = 0.0094 

FOXP1 methylation by EPIC 
array and pyrosequencing. 
Methylation indicates poor 

response [28]. 

CTLA4, PDCD1 Epigenetic Tumor 18 p < 0.01 

Array-based CpG-methylation 
assessment. Significant 

methylation differences between 
tumor and matched controls [87]. 

68 Genes Epigenetic Tumor 18 p < 0.05 
Differential DNA methylation 

pattern between durable clinical 
benefit vs. no benefit [88]. 

LAMA3 
Transcripti

onal 
Tumor 26 p = 0.003 

RT-PCR. In metastatic melanoma, 
LAMA3 differentially expressed 

in regressing vs. progressing 
metastases [89]. 

IFN-γ-Associated Gene-
Expression Score 

Transcripti
onal 

Tumor 
19, 62, 43, 

33 
p < 0.05 

NanoString gene expression 
profiling. High expression score 
predicts better response [1, 90]. 

Keratin Genes (KRT1, 
KRT5, KRT10, KRT15, 
KRT78), Cell Adhesion 

Genes (LOR, FLG2, 
DSC1, DSC3, LGALS7, 
LAMA3, KLK7), Wnt 

Pathway Genes (WNT3, 
WNT5A) 

Transcripti
onal 

Immune/Tu
mor 

10 FC ≥ 1.5 
Whole-genome microarray. High 

expression indicates poor response 
[89]. 

MAGE-A Cancer-
Germline Antigens 

Transcripti
onal/Histop
athological 

Tumor 55 p = 0.011 
MAGE-A expression by RT-PCR 

and IHC. High expression 
indicates poor response [91]. 

PD-L1 
Histopathol

ogical 
Immune/Tu

mor 
455, 305, 26 

Overall survival, p = 
0.06 (≥1% PD-L1), p 

< 0.001 (≥5% and 
≥10% PD-L1); 

Progression-free 
survival, p = 0.02 
(≥1% PD-L1), p < 
0.001 (≥5% and 
≥10% PD-L1); 

Objective response 
rate, p = 0.002 (≥1%, 
≥5%, ≥10% PD-L1); 

PD-L1 IHC. In advanced NSCLC 
with nivolumab, PD-L1 

expression predicts survival and 
response rates. In PD-L1-negative 

NSCLC, ICB efficacy matches 
chemotherapy. In NSCLC with 
≥50% PD-L1, pembrolizumab 

improves PFS and OS vs. 
chemotherapy. In metastatic 

melanoma with pembrolizumab, 
higher PD-L1+ cells correlate with 
response (p = 0.006) [77, 92-94]. 
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Overall survival HR = 
0.60, p = 0.005; p = 

0.006 

CD8 
Histopathol

ogical 
Immune 46 p < 0.0001 

CD8 IHC. In metastatic melanoma 
with pembrolizumab, higher 

CD8+ cells correlate with 
response [77]. 

PD-1 
Histopathol

ogical 
Immune 41 p = 0.0002 

PD-1 IHC. In metastatic 
melanoma with pembrolizumab, 
higher PD-1+ cells correlate with 

response [77]. 

Immunoscore 
Histopathol

ogical 
Immune 475 

Disease-specific 
survival, HR = 2.4 

(microsatellite 
instable); Overall 
survival, HR = 1.8 

(microsatellite 
instable); Disease-

specific survival, HR 
= 3.4 (microsatellite 

stable); Overall 
survival, HR = 2.43 

(microsatellite stable) 

CD3, CD8, or CD8 and CD45RO 
IHC. In colorectal cancer with 

anti-PD-1, immunoscore 
outperforms microsatellite 

instability as a response predictor 
[95]. 

CD63, E-cadherin, 
CXCL4, CXCL12 

Histopathol
ogical/Prot

ein 

Immune/Tu
mor 

8 

pCD63 = 0.013; pE-
cadherin = 0.005; 
pCXCL4 = 0.04; 

pCXCL12 = 0.041 

CD63, E-cadherin by IHC; CD63, 
E-cadherin, CXCL4, CXCL12 by 

proteomics. All indicate better 
response [96]. 

PTEN 
Histopathol

ogical 
Tumor 39 p = 0.029 

PTEN IHC. High expression 
indicates poor response [97]. 

Circulating CD8+ T 
Cells 

Cellular Immune 43 
% survival, HR = 
0.21, p = 0.00063 

Flow cytometry. High levels 
indicate response [98]. 

Circulating Monocytic 
MDSCs (CD14+) 

Cellular Immune 43 
Overall survival, HR 
= 2.89, p = 0.002203 

Flow cytometry. High levels 
indicate poor response [98]. 

Circulating PD-1+ 
CD8+ T Cells 

Cellular Immune 25 p = 0.02 
Flow cytometry. High levels 

indicate response [99]. 

Neutrophils/Lymphocyte
s Ratio 

Cellular Immune 58 
Overall survival 

(NLR ≥ 4), HR = 2.2, 
p = 0.0009 

Flow cytometry. High ratio 
indicates poor response [100]. 

Circulating Bim+PD-
1+CD8+ T Cells 

Cellular Immune 13 p < 0.05 
Flow cytometry. High levels 

indicate better response [101]. 
Total Tumor-Infiltrating 

Lymphocytes (TILs) 
Cellular Immune 64 p = 0.005 

TILs by IHC. High levels indicate 
response [102, 103]. 

Total Eosinophils Cellular Immune 29 

Progression-free 
survival, p < 0.0001; 
Overall survival, p = 

0.017 

Absolute eosinophil counts by 
blood tests. High levels indicate 

better response [104]. 

Lactate Dehydrogenase 
(LDH) 

Secreted Serum 66 
Overall survival, p = 

0.0292 
LDH ELISA. Elevated levels 
indicate poor response [105]. 

sCD25 Secreted Serum 262 
% survival, HR = 
1.26, p < 0.0165 

sIL-2 Receptor EIA assay. High 
levels indicate poor response 

[106]. 

CXCL11 Secreted Serum 247 
Overall survival, HR 

= 1.88, p = 0.014 

Bead-based multiplexed 
immunoassay. High levels indicate 

poor response [107]. 

CXCL9 and CXCL10 Secreted Plasma 18 p < 0.001 

ELISA. Higher levels post anti-
PD1 + anti-CTLA4 treatment in 
responders vs. non-responders 

[108]. 
C-reactive Protein 

(CRP) 
Secreted Serum 196 p = 0.028 

Immunofiltration. High levels 
indicate response [109]. 
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Among the immune-mediated contributors to ICB 
resistance (Figure 1), loss-of-function mutations in Janus 
kinases (JAKs) reduce T cell sensitivity to interferon-
gamma (IFN-γ) and substantially lower PD-L1 expression, 
which is normally induced via STAT-mediated 
transcription in response to IFN-γ. This downregulation of 
PD-L1 undermines both primary and acquired responses 
to PD-1 blockade, as the reactivation of T cells through the 
PD-1/PD-L1 axis is effectively blocked [37,110]. 
Disruption of IFN-γ signaling can also arise from 
transcriptional dysregulation of genes incorporated into 
the “IFN-γ-associated gene expression score,” which 
reflects the degree to which a tumor microenvironment is 
“T cell inflamed.” This score has been shown to predict 

responsiveness to pembrolizumab (anti-PD-1 antibody), 
with low IFN-γ-associated gene expression correlating 
with poor clinical benefit in melanoma, NSCLC, and 
gastric cancer patients receiving ICB [39,90]. Such 
transcriptomic signatures serve as both prognostic and 
predictive indicators [111]. Experimental evidence further 
supports this role: knockdown of Ifgr1 following anti-
CTLA-4 therapy in murine models leads to accelerated 
tumor growth and decreased survival [112]. Additionally, 
inactivating mutations in the β2-microglobulin gene, a 
component of MHC class I, have been identified in patient 
samples and cell lines resistant to anti-PD-1 therapy [37, 
113]. 

 

 
Figure 1. Key mechanisms of resistance to anti-PD-1 immune checkpoint therapy. (A) Tumor cells with a low epitope load 
generally trigger only weak immune activation because antigen-presenting cells (APCs) have a reduced ability to prime T 
cells, and cytotoxic T cells have limited recognition of tumor antigens. (B) Loss-of-function mutations in Janus kinases 
(JAKs) make T cells less responsive to IFN-γ, which drastically lowers PD-L1 expression by impairing activation of the 
STAT transcription factor. This reduction prevents T cells from being effectively reinvigorated through the PD-1/PD-L1 
pathway, contributing to both primary and acquired resistance to PD-1 blockade. (C) Mutations that damage β2-
microglobulin, a component of MHC class I, impair antigen presentation and thus confer resistance to anti-PD-1 therapy. 
(D) Tumor-associated PD-1-expressing macrophages can internalize anti-PD-1 antibodies, even removing them from PD-
1+CD8+ T cells already bound to the drug. This limits or reverses PD-1/PD-L1 blockade at the cytotoxic T cell, promoting 
treatment resistance. (E) In the “escape” phase of tumor immunoediting, when tumors become clinically evident, 
tolerogenic dendritic cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages secrete 
indoleamine-2,3-dioxygenase (IDO). This enzyme decreases tryptophan and increases kynurenine levels, which suppress 
effector T and NK cell activity, stimulate regulatory T cells, and enhance the tolerogenic properties of macrophages and 
dendritic cells. IDO also supports the expansion and activation of MDSCs. Collectively, these alterations suppress anti-
tumor T cell activity. 

 



Yang et al.  

 

 Bull Pioneer Res Med Clin Sci, 2022, 2(1):41-68 52 
 

Another immune-related mechanism of resistance 
involves tumor-associated PD-1 macrophages capturing 
anti-PD-1 antibodies, including those already bound to 
PD-1 on CD8+ T cells, which prevents disruption of the 
PD-1/PD-L1 interaction and limits immune activation 
[114]. 
Additional causes of acquired resistance include 
upregulation of alternative co-inhibitory immune 
checkpoints [115]. Similarly, in CTLA-4 therapy, tumor-
derived IDO activity contributes to resistance by 
suppressing effector T and NK cells, stimulating 
regulatory T cells, and promoting MDSC expansion [116, 
117]. IDO deficiency has been shown to increase CD4+ 
and CD8+ effector T cell infiltration in the tumor 
microenvironment and enhance the response to anti-
CTLA-4 therapy compared with wild-type conditions 
[118]. 

ICB Response Biomarker Candidates 

Although significant strides have been made in 
understanding immune checkpoint pathways and 
developing specific immune checkpoint inhibitors (ICIs), 
a substantial proportion of patients with immunogenic 
tumors do not respond to ICB therapy. Beyond limited 
therapeutic efficacy, the occurrence of severe adverse 
events and the high cost of treatment highlight the need to 
identify biomarkers that can prospectively determine 
which patients are likely to benefit from ICB [119]. 
Integrating pre-treatment “static” biomarkers with 
“dynamic” biomarkers for ongoing monitoring and refined 
clinical stratification is increasingly proposed as a strategy 
to optimize ICB regimens [120]. At present, potential ICB 
response biomarkers have been identified across multiple 
levels—including genomic, transcriptomic, and proteomic 
layers—as well as through immune profiling parameters 
[121, 122] (Table 3). 

Solid biopsy biomarker candidates 
Candidate clinical biomarkers for predicting ICB 
responsiveness have been detected at multiple biological 
scales (cellular, protein, transcript, gene) and in various 
sample types (tumor tissue, peripheral blood). These 
biomarkers reflect both tumor-intrinsic features and 
immune cell dynamics. 

Genetic and epigenetic markers 
Several studies have explored the correlation between 
tumor mutational burden (TMB) or neoantigen load and 
ICB responsiveness in cancers such as NSCLC and 
melanoma, particularly under anti-PD-1 or anti-CTLA-4 
monotherapy [69–72]. Neoantigen burden appears to 
better predict tumor immunogenicity than overall 
mutation load, as it reflects the subset of tumor antigens 
effectively recognized by T cell receptors and capable of 

eliciting robust immune responses. Certain genetic 
alterations—such as mutations in JAK1/2 or BRCA1/2—
have emerged as potential predictors of ICB efficacy, 
likely due to impaired activation of IFN-γ target genes or 
increased mutational load in DNA repair-deficient tumors, 
respectively [37, 70, 110, 123]. 
Loss-of-function mutations in JAK family members can 
confer melanoma resistance to IFN-γ, limiting IFN-γ–
induced growth arrest [37] and possibly reducing PD-L1 
expression, which may contribute to PD-1 blockade 
insensitivity [110]. Similarly, melanomas harboring 
mutations in IFN-γ signaling pathways exhibit resistance 
to anti-CTLA-4 therapy [112], whereas activation of this 
pathway is associated with response to anti-PD-L1 therapy 
[124]. Furthermore, IFN-γ–induced IDO expression is 
elevated in melanoma patients responding to CTLA-4 and 
PD-L1 inhibition [102,124]. 
Mutations in BRCA2, a key enzyme in double-strand 
DNA repair, significantly increase mutational load, which 
is linked to enhanced sensitivity to PD-1 blockade [70]. 
Tumors with mismatch repair deficiencies across various 
origins—carrying germline alterations in MSH2, MSH6, 
PMS2, or MLH1—also exhibit high neoantigen loads, 
indicative of effective tumor-specific T cell recognition 
[83]. However, comparable mutational and neoantigen 
patterns have been observed in both ICB responders and 
non-responders [89,110, 125]. 
Additional genetic variants associated with ICB response 
include CTLA4 genotypes 1577G/G and CT60G/G, which 
correlate with improved overall survival in patients 
receiving anti-CTLA-4 therapy [82]. High TCR clonality, 
as determined by β-chain sequencing, is more frequently 
observed in PD-1 responders than in those treated with 
CTLA-4 blockade [77, 125]. 
Regarding epigenetic biomarkers, a DNA methylation 
signature known as EPIMMUNE, comprising 301 CpG 
sites, has been identified as predictive of ICB response. 
This signature can be reduced to a single unmethylated 
CpG in FOXP1, a transcription factor regulating both 
naive CD4+ T cell quiescence [126] and T follicular helper 
cells [127], serving as a potential predictive marker in 
NSCLC patients undergoing ICB therapy [28]. 

Transcriptional biomarkers 
Transcriptional profiles can provide valuable insight into 
responses to PD-1 blockade, particularly in scenarios 
where DNA mutation patterns and immune characteristics 
appear similar [89]. Several gene expression signatures, 
including those linked to IFN-γ signaling [1, 90] and the 
Wnt/β-catenin pathway [39], have been correlated with 
ICB responsiveness. Additional expression signatures 
associated with clinical outcomes highlight potential 
resistance mechanisms. For example, certain extracellular 
matrix components, such as laminins, may form physical 
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barriers that prevent immune cell infiltration, thereby 
limiting immunotherapy efficacy. Likewise, increased 
neutrophil infiltration or activation has been observed in 
tumors showing progression [89]. 
A recently identified panel of transcriptional markers has 
been shown to correlate moderate tumor proliferation with 
improved survival outcomes, compared to tumors 
exhibiting either high or low proliferation, in NSCLC 
patients treated with ICB [128]. Moreover, the expression 
of endogenous retroviruses (ERVs) has been linked to 
favorable clinical responses to anti-CTLA-4 and PD-L1 
therapies [129]. Finally, an expression signature involving 
overexpression of MAGE-A cancer germline antigens has 
been proposed as a potential predictor of resistance to anti-
CTLA-4 treatment. Normally restricted to immune-
privileged gonadal tissues and certain tumors, these 
antigens often serve as targets for anti-tumor T cells in 
melanoma [91]. 

Histopathological biomarkers 
At the protein level, histopathological markers include 
PD-L1 expression, a well-established candidate for 
predicting responses to anti-PD-1 and PD-L1 
monotherapy across melanoma, NSCLC, renal cell 
carcinoma (RCC), and bladder cancer [130]. Many other 
protein markers primarily reflect the presence of immune 
cell populations critical to ICB efficacy. To date, PD-L1 is 
the only biomarker for which the FDA has approved a 
companion diagnostic test—PD-L1 IHC 22C3 
pharmDx—for pembrolizumab treatment in NSCLC, 
gastric/gastroesophageal junction adenocarcinoma, 
cervical cancer, and urothelial carcinoma. 

Cellular biomarkers 
The composition of immune cells within the tumor 
microenvironment plays a key role in differentiating 
responders from non-responders under both CTLA-4 and 
PD-1 blockade [131]. High intratumoral CD8+ T cell 
density prior to therapy correlates with radiographic tumor 
shrinkage [77]. Among tumor-infiltrating CD8+ T cells, a 
subset co-expressing PD-1 and CTLA-4 is linked to 
progression-free survival (PFS). Melanoma patients with 
over 20% of these cells exhibit a PFS of 31.6 months, 
compared to 9.6 months in patients with less than 20% 
[132]. These T cells display a partially exhausted 
phenotype, making them more responsive to 
reinvigoration via checkpoint blockade. 
However, CD8+ T cell rescue alone does not always 
predict clinical outcomes. When adjusted for tumor 
burden, the presence of circulating rejuvenated PD-
1+Ki67+CD8+ T cells provides a more reliable predictor 
of PFS following PD-1 blockade than absolute rejuvenated 
cell counts [99]. Additionally, the CD8+/Treg cell ratio 

has been found to correlate linearly with tumor necrosis in 
melanoma patients undergoing CTLA-4 inhibition [133]. 

Liquid biopsy biomarker candidates 
Circulating biomarkers offer substantial promise for non-
invasive and dynamic monitoring of ICB responses in 
bodily fluids [134]. Among these, circulating free DNA 
(cfDNA) has emerged as a clinically informative tool for 
guiding cancer treatment decisions [135]. Mutations 
detected in cfDNA closely mirror those found in tumor 
biopsies, and rising post-treatment cfDNA levels may 
signal disease progression in melanoma patients. 
Importantly, cfDNA can provide early indications of 
treatment response, even before clinical signs become 
evident, and can serve as a proxy for tumor burden in 
melanoma patients receiving ICB therapy [136]. 
Additionally, assessing copy number instability in cfDNA 
has been shown to predict disease progression more 
accurately than cfDNA concentration alone across 
multiple tumor types treated with immunotherapy [137]. 
Recent proof-of-concept studies have further highlighted 
the diagnostic and prognostic utility of profiling 5mC and 
5hmC epigenetic variants in cfDNA across various 
cancers [138]. 
Circulating tumor cells (CTCs) are also gaining attention 
as potential liquid biopsy biomarkers for ICB response. A 
recent case report [139] linked CTC detection in peripheral 
blood to metastatic progression. Furthermore, high PD-L1 
expression on CTCs in advanced head and neck cancer 
patients suggests that PD-L1+ CTCs could serve as 
predictive markers of ICB efficacy. 
Several circulating proteins and immune cell populations 
have also been proposed as response biomarkers. For 
example, elevated serum interleukin-8 (IL-8), secreted by 
tumors, is inversely associated with overall survival (OS) 
in NSCLC and melanoma patients under PD-1 blockade 
[140]. Similarly, angiopoietin-2 levels, both pre-treatment 
and post-treatment, inversely correlate with OS in patients 
receiving anti-CTLA-4 or PD-1 therapy [141]. Proteins 
within immune checkpoint pathways are detectable in 
liquid biopsies and relate to clinical outcomes: higher pre-
treatment soluble PD-L1 levels often predict disease 
progression, while post-treatment increases in PD-L1 are 
linked to partial response [142]. TIM3 and PD-1, along 
with IL-15 serum levels, are negatively correlated with 
long-term survival following CTLA-4 blockade, with IL-
15 enhancing TIM3 and PD-1 expression [143]. 
Regarding circulating immune cells, elevated levels of 
PD-1+ CD4+ effector T cells are associated with reduced 
OS in prostate cancer patients treated with anti-CTLA-4, 
whereas PD-1+ CD8+ T cells show no significant 
correlation [144]. Pre-treatment CD45RO+CD8+ T cells 
positively correlate with survival following CTLA-4 
blockade, and a higher proportion of CD4+ICOShi T cells 
predicts longer survival in the same context [145]. 
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Additionally, lower baseline LDH, higher relative or 
absolute eosinophil counts, and increased relative 
lymphocyte counts are linked with improved OS in 
melanoma patients receiving anti-PD-1 or CTLA-4 
therapy [146, 147]. Finally, an increased frequency of 
circulating Bim+PD-1+CD8+ T cells, which likely 
reflects active PD-1 signaling, has been correlated with 
greater anti-PD-1 efficacy [101]. 

DNA Methylation and Hydroxymethylation as 
Potential Biomarkers of Response to Cancer 
Immunotherapy 

Involvement of DNA methylation and 
hydroxymethylation in tumor immune evasion 
The dynamic nature of 5-methylcytosine (5mC) and 5-
hydroxymethylcytosine (5hmC), and their association 
with tumor immune evasion and T cell exhaustion, 
positions them as promising candidates for epigenetic 
biomarkers of ICB response. Epigenetic modifications or 
specific methylation signatures could represent a new 
class of predictive markers in immunotherapy. 
In the context of T cell exhaustion, DNA methylation 
appears to play a critical role in sustaining and reinforcing 
exhaustion-related transcriptional programs. For instance, 
Dnmt3a-mediated de novo methylation progressively 
accumulates in antigen-specific CD8+ T cells in mice, 
suppressing genes essential for effector function, 
proliferation, metabolism, and tumor homing, thereby 
limiting T cell expansion and clonal diversity under anti-
PD-1 treatment [148]. Parallel evidence comes from 
chronic lymphocytic choriomeningitis virus (LCMV)-
infected mice, where the maintenance of a particular 
chromatin configuration correlated with transient T cell 
reinvigoration induced by PD-1 blockade [149]. This 
temporary rejuvenation is likely mediated through NFκB 
signaling, with the preserved chromatin state supporting 
short-lived anti-tumor activity via post-treatment 
expression of key exhaustion-associated transcription 
factors, including T-bet and Eomes [149]. Similarly, in 
primary human CD4+ T cells stimulated in vitro via 
CD3/CD28, genomic regions bound by enhancers and 
transcription factors involved in T cell activation overlap 
with accessible chromatin regions following treatment-
induced remodeling [150]. Notably, some of these regions 
harbor mutations linked to autoimmune disorders, and 
correlations between specific SNPs and chromatin 
accessibility suggest that interindividual genetic variation 
may influence chromatin remodeling after ICB therapy 
[150]. Collectively, these findings underscore the 
significant contribution of epigenetic regulation to the risk 
of relapse following ICB [151, 152]. 
DNA methylation also mediates transcriptional 
reprogramming during T cell exhaustion in viral infection 

models. For example, the PD-1 promoter undergoes 
extensive demethylation in chronically stimulated CD8+ 
T cells, leading to stable exhaustion [153]. Conversely, 
during acute responses, the promoter is re-methylated as 
effector T cells transition to memory T cells [153]. The 
TET dioxygenase family facilitates active DNA 
demethylation, modulating the dynamics of 5mC and 
5hmC at the Pdcd1 promoter in murine CD4+ autoimmune 
effector T cells. Here, 5hmC appears to indicate a “poised” 
state, which is only erased under conditions of persistent 
PD-1 induction, such as peptide immunotherapy [154]. 
These observations highlight 5hmC as a potential 
biomarker for monitoring phenotypic reprogramming of 
effector T cells during exhaustion or ICB resistance. 
Tumor-intrinsic epigenetic reprogramming also 
contributes to the immunosuppressive tumor 
microenvironment (TME). For example, DNMT1-
mediated promoter methylation of Th1-type chemokines 
CXCL9 and CXCL10 in ID8 ovarian cancer cells reduces 
their transcription and protein expression, impairing 
cytotoxic T cell infiltration in C57BL/6 mice. Epigenetic 
modulation with azacytidine restored chemokine 
expression, enhanced effector T cell recruitment, and 
improved responses to anti-PD-L1 therapy [155]. Another 
immune evasion mechanism involves DNA methylation-
induced silencing of tumor-specific antigens. For instance, 
promoter hypermethylation of cancer/testis antigens 
diminishes tumor immunogenicity by preventing 
recognition by antigen-specific CD8+ T cells [156–159]. 
Conversely, demethylation increases endogenous 
retroviral double-stranded RNA, activating the 
MDA5/MAVS signaling pathway, which stimulates 
immune-related transcription factors and the IFN 
response, ultimately suppressing tumor growth [160, 161]. 
As discussed, epigenetic modifications in immune cells 
play a pivotal role in shaping immune responses and 
evasion, positioning 5mC and 5hmC as promising 
biomarkers for predicting ICB response. For example, 
Tet2 regulates the differentiation of naïve CD4+ T cells 
into various helper T (Th) lineages in mice, thereby 
directly influencing cytokine production [162]. Tet2 also 
contributes to the effector differentiation of CD8+ T 
lymphocytes [163]. The critical function of TET-mediated 
active demethylation is further exemplified in Treg cells, 
where TET enzymes control Foxp3 expression. 
Demethylation establishes lineage-specific epigenetic 
signatures that guide Treg development and maturation in 
the thymus [164]. Moreover, TET activity is implicated in 
maintaining Foxp3 expression [165], and demethylation of 
the IL2 promoter coincides with increased IL2 production 
upon CD4+ T cell activation [166]. 
Despite the growing body of research elucidating 5mC and 
5hmC roles in tumor immune evasion, the precise 
mechanisms linking these epigenetic modifications to 
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immune regulation remain incompletely understood. For 
instance, Scharer et al. described a stepwise differentiation 
process of CD8+ T cells initiated by antigen presentation, 
during which previously inactive genes, such as Pdcd1 in 
naïve T cells, undergo progressive demethylation as cells 
acquire effector functions [167]. This process begins with 
the binding of CpG-free transcription factors (e.g., 
NFATc1), which induce histone H3 and H4 acetylation 
and DNA demethylation. The resulting open chromatin 
landscape then allows binding of DNA methylation-
sensitive transcription factors that drive the transcriptional 
reprogramming toward the effector phenotype (e.g., 
Pdcd1). Notably, transcription factors sensitive to DNA 
methylation, including c-JUN, JUND, c-MYC, 
CREB/ATF, CTCF, and ETS1, are broadly expressed 
during CD8+ T cell differentiation [168]. 

Emerging evidence supporting DNA methylation and 
hydroxymethylation as epigenetic predictors of icb 
response 
Recognition of the pivotal roles of 5mC and 5hmC has led 
to the emergence of pharmacoepigenetics, a field 

investigating how epigenomic alterations influence 
therapeutic response. In tumor cells, substantial 
remodeling of the epigenome has facilitated the 
identification of a growing repertoire of epigenetic 
biomarkers. Comprehensive reviews provide detailed 
overviews of this area [169–173]; here, we emphasize that 
epigenetic changes associated with ICB responsiveness 
could be leveraged to monitor clinical benefit over the 
disease course. Table 4 summarizes the most relevant 
non-invasive DNA methylation biomarkers for cancer. 
It is noteworthy that the majority of cytosine-based 
biomarkers identified to date focus on DNA methylation, 
partly because technologies capable of distinguishing 
5mC from 5hmC have only recently become available 
[174, 175]. By applying these advanced methods, we have 
characterized the ADME-related methylome and 
hydroxymethylome of the human liver [176]. In a proof-
of-principle study, 5hmC mapping revealed an 
unexpectedly high degree of hypermethylation in human 
hepatocellular carcinoma, highlighting its utility for 
identifying novel diagnostic biomarkers [177]. 

 

Table 4. Examples of DNA Methylation Alterations as Non-Invasive Biomarkers for Cancer Diagnosis and Prognosis 

Biomarker 
Type 

Gene Cancer Type Description 
Accuracy of Panel Including 
Methylated Gene or p Value 

Diagnostic ARF Bladder 
Methylation of ARF promoter in 

urine identifies bladder cancer [178] 
∆82%/96% 

Prognostic 
APC, 

GSTP1 
Prostate 

Hypermethylation of APC and 
GSTP1 in prostate cancer correlates 
with adverse pathological features 

[179] 

ROC of the assay test score: 
clinical AUC = 0.79 

Diagnostic BCL Bladder 
BCL methylation in urine sediments 

detects bladder cancer [180] 
† 78% (29/37) 

Prognostic CDH13 Prostate 

Serum CDH13 methylation linked 
to advanced tumor stage, poorer 
survival, and increased mortality 

risk [181] 

HR 6.132 (95%CI: 3.160–12.187), 
p = 0.0073 

Diagnostic CDKN2A Bladder 
CDKN2A promoter methylation in 
urine detects bladder cancer [178] 

∆82%/96% 

Diagnostic DAPK Bladder 
DAPK methylation in urine 

sediments identifies bladder cancer 
[180] 

† 78% (29/37) 

Diagnostic 
(Early) 

ERα Prostate/Breast (Primary) 
Serum ERα promoter methylation 

detects early-stage prostate and 
breast cancer [182,183] 

∆75%/70% 

Diagnostic 
(Early) 

ERβ Prostate 
Serum ERβ promoter methylation 

identifies early-stage prostate cancer 
[182] 

∆75%/70% 

Diagnostic FBN1 Colorectal 
FBN1 methylation in stool detects 

colorectal cancer [184] 
∆84.3%/93.3% 

Diagnostic FBN2 Colorectal (Primary) 
Serum FBN2 methylation identifies 

colorectal cancer in males and 
hepatic metastasis [185] 

Male: p = 0.0167; hepatic 
metastasis: p < 0.0001 

Diagnostic, 
Prognostic 

GSTP1 
Bladder/Prostate/Castrate-
Resistant Prostate/Breast 

GSTP1 hypermethylation in 
urine/serum correlates with prostate 

cancer and adverse features 
[179,186,187] 

∆82%,96%/−/† 82% 
(28/34)/∆75%/98%/† 6% 7/120/† 

22% 22/101 



Yang et al.  

 

 Bull Pioneer Res Med Clin Sci, 2022, 2(1):41-68 56 
 

Diagnostic FHIT Ductal Breast Cancer 
Serum FHIT methylation associated 

with breast cancer [188] 
p < 0.05 

Diagnostic hMLH1 Breast 
Serum hMLH1 methylation detects 

breast cancer [189] 
AUC = 0.727 (BCa versus NC), 
AUC = 0.789 (BCa versus BN) 

Prognostic HLTF Colorectal 
Serum HLTF methylation linked to 

higher recurrence risk [190] 
HR 2.7 (95%CI: 1.2–6.0), p = 

0.014 

Diagnostic HOXD13 Breast 
Serum HOXD13 methylation 

detects breast cancer [189] 
AUC = 0.727 (BCa versus NC), 
AUC = 0.789 (BCa versus BN) 

Diagnostic 
(Early) 

5MCAM Prostate 
Serum 5MCAM promoter 

methylation identifies early-stage 
prostate cancer [182] 

∆75%/70% 

Diagnostic MGMT Bladder/Lung/Colorectal 
MGMT hypermethylation in 

colorectal cancer associated with 
dacarbazine response [191] 

∆82%/96% 

Diagnostic NID2 Bladder (Primary) 
NID2 methylation in urine detects 

primary bladder cancer [192] 
† 94% (466/496) 

Diagnostic P16 Breast 
Serum P16 methylation detects 

breast cancer [189] 
AUC = 0.727 (BCa versus NC), 
AUC = 0.789 (BCa versus BN) 

Diagnostic PCDHGB7 Breast 
Serum PCDHGB7 methylation 

detects breast cancer [189] 
AUC = 0.727 (BCa versus NC), 
AUC = 0.789 (BCa versus BN) 

Prognostic PCDH10 Prostate 

Serum PCDH10 methylation 
predicts worse biochemical 

recurrence-free and overall survival 
[193] 

HR 2.796 (95%CI: 1.431–6.763), 
p = 0.006 

Diagnostic PCDH17 Bladder 
PCDH17 methylation in urine 

sediments detects bladder cancer 
[194] 

∆90%/93.96% 

Diagnostic PHACTR3 Colorectal 
PHACTR3 methylation in stool 
identifies colorectal cancer [195] 

Sensitivity: 55%–66%; specificity: 
95%–100% 

Diagnostic POU4F2 Bladder 
POU4F2 methylation in urine 

sediments detects bladder cancer 
[194] 

∆90%/93.96% 

Diagnostic TERT Bladder 
TERT methylation in urine 

sediments identifies bladder cancer 
[180] 

† 78% (29/37) 

Diagnostic TMEFF2 NSCLC 
Increased TMEFF2 methylation in 
tumors without EGFR mutations 

[196] 

Multivariate adjusted odds ratio = 
7.13 (95%CI: 2.05–24.83), p = 

0.002 

Diagnostic 
(Early) 

RARB Prostate 
RARB methylation in urine 

sediments detects early-stage 
prostate cancer [197] 

† 82% (28/34) 

Diagnostic RARβ2 Breast 

Serum RARβ2 promoter 
methylation in methylation-specific 

PCR assay detects breast cancer 
[186] 

† 6% 7/120/†22% 22/101 

Diagnostic 
(Early) 

RASSF1 Prostate 
RASSF1 methylation in urine 

sediments identifies early-stage 
prostate cancer [197] 

† 82% (28/34) 

Diagnostic, 
Prognostic 

RASSF1a Breast/Lung/Ovarian 

Serum RASSF1a promoter 
methylation in methylation-specific 

PCR assay detects breast cancer 
[186] 

AUC = 0.727 (BCa versus NC), 
AUC = 0.789 (BCa versus BN)/† 

6% 7/120/† 22% 22/101 

Diagnostic, 
Prognostic 

SEPT9, 
TAC, CEA 

Colorectal 

Serum SEPT9 methylation predicts 
colorectal cancer; Epipro Colon 2.0 

assay is highly effective. 
Postoperative SEPT9, CEA, or TAC 
methylation predicts recurrence and 

survival [198, 199] 

(Diagnostic) Sensitivity = 0.71, 
Specificity = 0.92, AUC = 0.88. 

(Prognostic) Disease-free survival: 
adjusted hazard ratios of the ∆ = 
2.58–4.71 p < 0.05; recurrence: 

sensitivity = 32.6–90; specificity = 
80–90 
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Diagnostic SFN Breast 
SFN methylation in urine sediments 

detects bladder cancer [180] 
AUC = 0.727 (BCa versus NC), 
AUC = 0.789 (BCa versus BN) 

Diagnostic SNCA Colorectal 
SNCA methylation in stool 

identifies colorectal cancer [184] 
∆84.3%/93.3% 

Prognostic SST Colorectal 

High serum SST methylation serves 
as an independent prognostic 

biomarker for colorectal cancer 
[200] 

Multivariate adjusted for cancer-
specific survival: HR 1.96 

(95%CI: 1.06, 3.62), p = 0.031; 
for overall survival HR 2.60 

(95%CI: 1.37, 4.94), p = 0.003 

Diagnostic TWIST1 Bladder (Primary) 
TWIST1 methylation in urine 
detects primary bladder cancer 

[192] 
† 94% (466/496) 

Diagnostic, 
Prognostic 

VIM Colorectal 

Serum VIM methylation associated 
with liver metastasis, peritoneal 

dissemination, and distant 
metastasis [201] 

(Liver metastasis) p = 0.026, 
(Peritoneal dissemination) p = 

0.0029, (Distant metastasis) p = 
0.0063 

Prognostic mir-34b/c Colorectal 
mir-34b/c methylation in mucosal 
wash fluid linked to invasiveness 

[202] 

Accuracy: 91.3% for the training 
set and 85.1% for the test set 

Prognostic MGMT Glioblastoma Multiforme 
Serum and tumor MGMT 

methylation associated with 
improved stable response [203] 

Median time to progression: log-
rank test, p = 0.006, 29.9 weeks 

with methylated MGMT, 95%CI, 
24.3–35.4) vs. 15.7 weeks with 
unmethylated MGMT (95%CI, 

14.3–17.2) 

Diagnostic, 
Prognostic 

(Early) 

Panel of 6 
genes 

(CDO1, 
HOXA9, 
AJAP1, 
PTGDR, 
UNCX, 

MARCH11) 

Lung 

Methylation of 6 genes in serum 
detects stage IA NSCLC; 

methylation of CDO1, HOXA9, 
PTGDR, AJAP1 refines prognostic 

risk [204] 

(Serum) Sensitivity: 72.1%; 
specificity: 71.4%. (Prognosis 

factor) Combination methylation 
marker multivariate adjusted p = 

0.035 

Prognostic BRMS1 Lung 

Circulating BRMS1 promoter 
methylation in cell-free DNA 

affects disease-free interval and 
overall survival in NSCLC [205] 

Multivariate analysis: for 
progression-free survival: HR 

1.951 (95%CI: 1.175–3.238), p = 
0.01; for overall survival: HR 

2.057 (95%CI: 1.247–3.386), p = 
0.005 

Prognostic SOX17 Lung 

SOX17 promoter methylation in 
plasma cell-free DNA impacts 
overall survival in advanced 

NSCLC [206] 

Univariate analysis for overall 
survival: HR 1.834 (95%CI: 

1.105–3.045), p = 0.019 

† Overall detection level. 
Regarding epigenetic biomarkers of ICB response, we 
recently reported that the methylation status of 301 CpG 
sites, collectively termed the “EPIMMUNE” signature, 
and particularly the unmethylated state of a single CpG 
within FOXP1—a transcription factor involved in 
quiescent CD4+ T cell regulation and follicular T helper 
cell function—was associated with both overall survival 
(OS) and progression-free survival (PFS) in NSCLC 
patients treated with anti-PD-1 therapy [28]. We 
hypothesize that blocking the PD-1/PD-L1 axis releases 
pre-existing immunosuppression, enabling activation of 
residual naïve CD4+ T cells and enhancing anti-tumor 
immunity. Interestingly, commonly studied response 
predictors, such as CD8+ T cell levels, PD-L1 protein 
expression, and tumor mutational burden, did not reliably 

distinguish patients with improved outcomes. This 
represents the first documented association of epigenetic 
variants with the clinical efficacy of ICB. 
To date, no specific 5hmC biomarker has been clinically 
validated for cancer therapy response, although multiple 
lines of evidence implicate TET enzymes in mediating 
therapeutic responses. For example, TET1 knockdown in 
EGFR-mutant lung cancer cell lines confers resistance to 
EGFR inhibitors, whereas responsive tumors exhibit 
elevated TET1 expression [207]. As described earlier, 
5mC and 5hmC remodeling influences numerous tumor-
intrinsic and extrinsic pathways underlying both innate 
and acquired resistance to ICB. DNA methylation 
regulates the expression of key checkpoint genes—PD-1, 
PD-L1, PD-L2, and CTLA-4—and their silencing impairs 
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antigen presentation and cytotoxic immune activity [208, 
209]. Notably, baseline tumor biopsies from NSCLC 
patients show hypermethylation-mediated silencing of 
CTLA-4 and PD-1 relative to paired normal tissues [87]. 
In colorectal cancer, PD-L1 expression correlates with 
CpG island hypermethylation in a subset of BRAF V600E 
carriers exhibiting high CD3+ T cell infiltration [210]. 
In metastatic melanoma patients treated with CTLA-4 
inhibitors, responders and non-responders display distinct 
DNA methylation patterns in genes related to nervous 
system development and neuronal differentiation [88]. 
Given that melanocytes and neurons share a neural crest 
origin, this suggests that de-differentiation of tumor cells 
may contribute to ICB resistance. Indeed, inflammation-
induced de-differentiation has previously been proposed 
as an immune evasion mechanism [211]. 
Stepwise hypermethylation has also been implicated in 
tumor escape through suppression of the interferon 
regulatory factor IRF8 [212]. Conversely, demethylation 
can reactivate transcription of immune-related genes, 
including PD-L1 and interferon signaling components, 
both in vitro and in vivo, highlighting its potential to 
sensitize tumors to anti-PD-L1 therapy [213, 214]. In 
murine ovarian cancer models, demethylation activates 
type I interferon signaling, enhancing response to anti-
CTLA-4 therapy [161]. Moreover, combination therapy 
using azacytidine with CTLA-4 monoclonal antibodies 
more effectively suppresses tumor growth than either 
agent alone, likely through upregulation of MHC class I 
molecules [215]. Additional studies indicate that this 
combination also increases lymphocyte infiltration and the 
expression of Th1-type chemokines and cytokines, 
contributing to improved outcomes [216]. Interestingly, 
crosstalk between immune signaling and epigenetic 
regulation is evident in cancer; for instance, NF-κB 
interacts with the TET1 promoter to suppress its 
expression in breast cancer cells [217]. 
As a result of substantial preclinical evidence and the 
recognition that epigenetic reprogramming contributes to 
acquired drug resistance, there has been a marked increase 
in clinical trials evaluating combinatorial therapies with 
epigenetic drugs [170, 218]. In particular, DNA 
demethylating agents and histone deacetylase inhibitors 
are being tested in combination with ICB across various 
cancer types. Sun and colleagues recently reviewed 
ongoing trials combining histone modification inhibitors 
with immunotherapy, noting that most combinations 
involve anti-PD-1 agents paired with histone deacetylase 
inhibitors. Proposed mechanisms underlying the 
synergistic effects include upregulation of CD80 and 
CD86 by histone deacetylase inhibitors in the context of 
anti-CTLA-4 therapy, modulation of immune checkpoint 
ligand expression, and induction of tumor neoantigens to 
enhance PD-1/PD-L1-targeted responses. Similarly, 

combinatorial strategies with DNA-demethylating and 
histone-modifying agents aim to increase tumor 
neoantigen expression while simultaneously 
downregulating PD-L1. Additionally, BET/bromodomain 
4 inhibitors have been shown to polarize macrophages 
toward an immunostimulatory phenotype, reducing the 
presence of myeloid-derived suppressor cells (MDSCs) in 
the tumor microenvironment [219]. 

Future Perspectives and Conclusions 

Although the reactivation of anti-tumor immunity via 
antibodies targeting co-inhibitory immune receptors might 
seem like an inherent vulnerability for tumors, the lack of 
robust predictive biomarkers and the intricate tumor 
microenvironment (TME) networks often result in innate 
and acquired resistance, and in some cases, 
hyperprogression. As detailed in this review, considerable 
efforts have focused on identifying biomarkers predictive 
of ICB response, with recent strategies employing top-
down approaches and Next Generation Sequencing to 
uncover novel tumor-intrinsic and extrinsic mechanisms. 
Despite the recognized importance of epigenetic 
regulation in tumor immune evasion, only one study to 
date has reported CpG-site specific epigenetic biomarkers 
predictive of ICB response in human samples [28]. 
Moreover, DNA methylation likely plays a central role in 
sustaining T cell exhaustion gene programs during 
therapy. Consequently, the continued exploration of 5mC 
and 5hmC signatures linked to differential clinical 
outcomes could identify new predictive biomarkers and 
generate mechanistic insights. These findings could 
ultimately be incorporated into multi-omics predictive 
frameworks, advancing the personalization of cancer 
immunotherapy. 
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