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Abstract 

While kidney transplantation substantially improves patient outcomes, early post-transplant 
mortality remains a concern. Growth differentiation factor 15 (GDF-15) has recently been 
explored as a biomarker for predicting mortality in various clinical contexts. This study 
investigates whether pretransplant GDF-15 levels can serve as a prognostic indicator in kidney 
transplant candidates. The analysis included 395 recipients with stored serum samples obtained 
prior to transplantation. The median GDF-15 level was 5331.3 pg/mL (range: 50.49–16,242.3). 
Over an average follow-up of 90.6 ± 41.5 months, 82 patients (20.8%) died. Patients in the 
highest GDF-15 tertile faced approximately double the mortality risk, even after adjusting for 
clinical variables (p = 0.009). When accounting for the Estimated Post Transplant Survival 
(EPTS) score, elevated GDF-15 remained significantly associated with mortality: medium-risk 
tertile HR = 3.24 (95% CI: 1.2–8.8; p = 0.021) and high-risk tertile HR = 4.3 (95% CI: 1.65–
11.54; p = 0.003). Addition of GDF-15 to the EPTS score improved predictive accuracy for 1-
year (∆AUC = 0.09, p = 0.039) and 3-year mortality (∆AUC = 0.11, p = 0.036). These results 
suggest that higher pretransplant GDF-15 concentrations independently predict mortality and 
can enhance the prognostic performance of established risk assessment tools for kidney 
transplant candidates. 
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Introduction 

Growth differentiation factor 15 (GDF-15) is a stress-
responsive cytokine belonging to the transforming growth 
factor β (TGF-β) superfamily. This multifunctional protein 
is involved in regulating inflammation, metabolic 
processes, and oncogenic pathways. Although GDF-15 is 

minimally expressed under normal physiological 
conditions, its levels rise in response to tissue injury, 
ischemia, oxidative stress, and metabolic disturbances, 
highlighting its potential as a biomarker in various human 
diseases [1–3]. 
Elevated circulating GDF-15 has been strongly associated 
with cardiovascular disorders. In patients with heart 
failure, GDF-15 provides prognostic information beyond 
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conventional risk factors, predicting both all-cause and 
cardiovascular mortality [3, 4]. Higher GDF-15 levels 
correlate with lower ejection fraction, diastolic 
dysfunction, and more severe clinical symptoms [5, 6]. 
Following myocardial infarction, GDF-15 levels rise, not 
necessarily reflecting the extent of myocardial necrosis, 
but rather indicating chronic disease burden and poorer 
outcomes. In this context, elevated GDF-15 has been 
linked to higher risks of mortality and recurrent infarction, 
suggesting its potential utility for patient stratification and 
therapeutic decision-making in acute coronary syndromes 
[7–9]. Beyond the heart, GDF-15 has been implicated in 
other vascular conditions, including peripheral artery 
disease and stroke [10–12]. 
GDF-15 has also emerged as a potential marker in 
oncology. Its involvement in angiogenesis, cell 
proliferation, apoptosis, and tissue remodeling supports its 
relevance in cancer biology. Elevated GDF-15 expression 
has been reported across multiple malignancies, including 
breast, colorectal, prostate, and head and neck cancers 
[13–16]. 
In nephrology, higher GDF-15 concentrations have been 
associated with an increased risk of chronic kidney disease 
(CKD) onset and faster progression of renal dysfunction 
across diverse conditions, such as diabetic nephropathy, 
IgA nephropathy, and primary membranous nephropathy 
[17–20]. Recent studies have evaluated GDF-15 as a 
prognostic biomarker in CKD populations, demonstrating 
that elevated levels predict mortality and cardiovascular 
events across all CKD stages, including in patients on 
hemodialysis [21–26]. While GDF-15 generally decreases 
after kidney transplantation—reflecting reduced 
cardiovascular risk—its levels remain linked to anemia 
and the severity of ischemia-reperfusion injury in 
transplant recipients [27–31]. 
Cardiovascular disease remains the leading cause of death 
among kidney transplant recipients, followed by infections 
and malignancies [32, 33]. The risk of major adverse 
cardiac events (MACE) is particularly high in the early 
post-transplant period, although it subsequently declines 
compared to dialysis patients [34, 35]. Nevertheless, 
cardiovascular morbidity and mortality continue to pose 
significant challenges, emphasizing the need for accurate 
pretransplant cardiovascular assessment [36, 37]. Current 
evaluation methods often lack sufficient predictive power 
to prevent adverse events effectively [38–40]. 
Consequently, there is a clear need for non-invasive, 
reliable biomarkers to improve risk stratification, reduce 
reliance on aggressive procedures, and guide pretransplant 
clinical decision-making. Given GDF-15’s associations 
with the pathophysiological conditions prevalent in 
transplant candidates, it represents a promising biomarker 
for pretransplant evaluation. Therefore, this study aims to 
identify factors influencing GDF-15 levels in patients with 

advanced CKD and to assess its potential utility as a 
predictor of post-transplant survival. 

Experimental Section 

This study included all adult kidney transplant procedures 
performed at our institution between 2005 and 2015. As 
part of standard practice since 1985, pretransplant serum 
samples have been routinely collected and stored at low 
temperatures. Only samples with at least 150 µL 
remaining for GDF-15 measurement were eligible for 
inclusion. The study protocol complied with the 
Declaration of Helsinki and received approval from the 
hospital Ethics Committee. 
GDF-15 concentrations were measured using a 
commercially available enzyme-linked immunosorbent 
assay (Quantikine, R&D Systems, Minneapolis, MN, 
USA). Samples with high GDF-15 values were diluted to 
allow accurate quantification, and each sample was 
analyzed in duplicate to ensure measurement reliability. 
For statistical purposes, GDF-15 was evaluated as a 
continuous variable after logarithmic transformation due 
to non-normal distribution, and as a categorical variable 
by dividing patients into tertiles. 
Demographic and clinical information for recipients, 
donors, and transplant procedures was retrieved from a 
prospectively maintained renal transplant database. 
Collected variables included age, sex, race, primary cause 
of CKD, dialysis history, number of prior transplants, and 
history of other solid organ transplants. Cardiovascular 
comorbidities included documented coronary artery 
disease confirmed by imaging and clinically significant 
peripheral artery disease requiring intervention. 
Pretransplant diabetes was defined as requiring 
pharmacologic treatment. 
For first-time transplant recipients, the Estimated Post 
Transplant Survival (EPTS) score was calculated using 
age, dialysis duration, diabetes status, and prior transplant 
history, following the official OPTN online calculator 
(https://optn.transplant.hrsa.gov/resources/allocation-
calculators/epts-calculator/). 
Continuous variables were expressed as mean ± standard 
deviation or median with interquartile range (IQR) for 
skewed distributions. Categorical variables were 
presented as frequencies and percentages. Logistic 
regression, both univariate and multivariate, was used to 
identify clinical factors associated with higher GDF-15 
levels. 
The main outcome was all-cause mortality. Associations 
between GDF-15 (log-transformed and tertile-based) and 
survival were evaluated using Cox proportional hazards 
models. Covariates for adjustment were selected based on 
prior literature. Variables significant in univariate analyses 
were included in multivariate models, and results were 
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reported as hazard ratios (HR) with 95% confidence 
intervals (CI). Statistical significance was set at p < 0.05. 
Predictive performance of GDF-15, EPTS, and their 
combination was assessed using receiver operating 
characteristic (ROC) curves and area under the curve 
(AUC) for mortality at 1, 3, and 5 years post-transplant. 
All statistical analyses were performed using SPSS 
version 22.0 (SPSS Inc., Chicago, IL, USA) and 
MedCalc® version 19.6 (MedCalc Software Ltd., Ostend, 
Belgium). 

Results and Discussion 

Between January 2005 and December 2015, a total of 450 
kidney transplants were performed at our center. Of these, 
395 patients had pretransplant serum samples available 
and were included in the analysis. For hemodialysis 
patients, samples were obtained after a short dialysis 
vintage, whereas for peritoneal dialysis and preemptive 
transplant candidates, samples were collected immediately 
prior to transplantation. Baseline characteristics of the 
cohort are summarized in Table 1. 
Among the study population, 31 patients (7.8%) had 
received prior non-renal transplants, including liver (n = 
5), heart (n = 8), lung (n = 4), and pancreas (n = 14). A 
majority of patients (n = 264; 66.8%) were receiving their 
first kidney transplant, while 131 patients underwent 
retransplantation. The overall duration of renal 
replacement therapy, encompassing both dialysis and 
previous transplants, was 1.76 years (IQR 0.56–5.06). 
Regarding sensitization status, 319 recipients (80.8%) 
were unsensitized, with a virtual panel-reactive antibody 
(PRA) of 0%. Among the 76 sensitized patients, the 
median peak PRA was 65% (IQR 36.7–93.3). 
Immunosuppressive therapy predominantly included 
calcineurin inhibitors (91.4%), mTOR inhibitors (4.6%), 
mycophenolate or azathioprine (93.9%), and prednisone 
(93.4%). Induction therapy was not administered in 275 
patients (69.6%), while 18 patients (4.6%) received 
basiliximab and 100 patients (25.4%) received 
thymoglobulin. 
Concerning donor characteristics, most patients (94.2%) 
received kidneys from deceased donors, with the majority 
from brain-death donors (92.4%) and a smaller proportion 
from cardiac-death donors (1.8%). Living donor 
transplants accounted for 5.8% of the cohort. 
 

Table 1. Baseline characteristics 

Number of patients 395 
Donor age (years) 57.1 (47.6–66.6) 

Cold Ischemia Time (min) 19 (15–23) 
Recipient age (years) 52 ± 12.4 

Recipient sex (%) 68.1 males/31.9 females
Recipient race (% Caucasian) 96.5 

Diabetes (%) 23 

Type I 7.8 
Type II 15.2 

Coronary artery disease (%) 10.4 
Peripheral vascular disease (%) 8.6 

Non renal solid organ transplant (%) 7.8 
Primary renal diagnosis  

Glomerular (%) 27.4 
Diabetes (%) 14.7 

Hypertension/vascular (%) 24.2 
Polycystic kidney disease (%) 12.4 

Other (%) 15.7 
Unknown (%) 5.6 

Preemptive transplant (%) 15.9 
Time of renal replacement therapy 

(years) 
1.76 (0–5.1) 

Retransplant (%) 33.2 
GDF-15 (pg/mL) 5331.3 (4071.8–6819.9)

Hemoglobin (g/dL) 11.9 (10.8–13) 
Serum albumin (g/dL) 4 (3.8–4.3) 

Creatinine (mg/dL) 6.4 (4.9–8.3) 
Uric acid (mg/dL) 6.3 (5.2–7.8) 

C-reactive protein (mg/L) 0.5 (0.2–1.1) 
Phosphorus (md/dL) 5.1 (4.0–6.1) 

Parathyroid hormone (pg/mL) 290 (149–495) 

 
Among the 395 kidney transplant recipients included in 
this study, the median pretransplant GDF-15 concentration 
was 5331.3 pg/mL (IQR 4071.8–6819.9), with only six 
patients (1.5%) exhibiting values within the normal range 
for healthy adults (≤2000 pg/mL) [1, 15]. For analysis, 
participants were divided into tertiles: low (<4612.1 
pg/mL), medium (4612.1–6296.5 pg/mL), and high 
(>6296.5 pg/mL) GDF-15 levels. 
In univariate logistic regression, higher GDF-15 
concentrations (>4612.1 pg/mL) were associated with 
older age (OR 1.04, 95% CI 1.02–1.06, p < 0.001), 
presence of coronary artery disease (OR 2.66, 95% CI 
1.14–6.16, p = 0.02), peripheral artery disease (OR 2.51, 
95% CI 1.01–6.2, p = 0.048), and longer duration of renal 
replacement therapy (OR 1.04, 95% CI 1.01–1.10, p = 
0.02). No significant relationship was found with sex, race, 
diabetes, underlying renal disease, hemoglobin, albumin, 
creatinine, uric acid, C-reactive protein, phosphorus, 
parathyroid hormone, preemptive transplant status, 
dialysis modality, or history of non-renal solid organ 
transplants. In multivariate analysis, only age (OR 1.04, 
95% CI 1.02–1.06, p < 0.001) and renal replacement 
therapy duration (OR 1.04, 95% CI 1.01–1.07, p = 0.02) 
remained independently associated with elevated GDF-15. 
During a mean follow-up of 90.6 ± 41.5 months, 82 
patients (20.8%) died. Higher GDF-15 levels were 
significantly linked to increased mortality in univariate 
Cox regression (log-transformed GDF-15: HR 3.88, 95% 
CI 1.18–12.78, p = 0.026). Mortality risk increased 
progressively across tertiles, with medium (HR 2.16, 95% 
CI 1.14–4.44, p = 0.018) and high-risk groups (HR 3.28, 
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95% CI 1.79–6.10, p < 0.001) showing worse survival 
compared to the low tertile (Figure 1). 
Other factors significantly associated with post-transplant 
mortality included older age (HR 1.07, 95% CI 1.04–1.09, 
p < 0.001), diabetes (HR 2.34, 95% CI 1.49–3.67, p < 
0.001), coronary artery disease (HR 2.99, 95% CI 1.75–
5.13, p < 0.001), peripheral arterial disease (HR 2.24, 95% 
CI 1.24–4.06, p = 0.008), prior non-renal solid organ 
transplantation (HR 1.97, 95% CI 1.02–3.84, p = 0.044), 
and renal graft loss (HR 1.61, 95% CI 1.03–2.53, p = 
0.038). Variables not significantly associated with 
survival included sex, race, dialysis modality, 
pretransplant lab parameters (albumin, creatinine, uric 
acid, CRP, phosphorus, parathyroid hormone, 
hemoglobin), PRA, donor type, induction therapy, and 
immunosuppressive regimen. 

Figure 1. Kaplan–Meier survival estimates stratified by 
GDF-15 tertiles 

 
In multivariate Cox regression, the association between 
elevated GDF-15 and mortality remained significant for 
the high-risk tertile (HR 2.29, 95% CI 1.24–4.24, p = 
0.009), after adjusting for age (HR 1.07, 95% CI 1.04–
1.09, p < 0.001), history of coronary artery disease (HR 
2.20, 95% CI 1.26–3.82, p = 0.005), censored graft loss 
(HR 1.95, 95% CI 1.23–3.09, p = 0.005), and previous 
non-renal solid organ transplants (HR 2.64, 95% CI 1.32–
5.28, p = 0.006). A summary of variables associated with 
mortality in both univariate and multivariate analyses is 
provided in Table 2. 
 

Table 2. Variables associated with mortality in univariate and multivariate Cox regression analysis 

 Univariate Multivariate 
HR (CI) p-Value HR (CI) Model 1 p-Value HR (CI) Model 2 p-Value 

Age (per year) 1.07 (1.04–1.09) <0.001 1.07 (1.04–1.09) <0.001  

Diabetes 2.34 (1.49–3.67) <0.001 ns  

Coronary artery disease 2.99 (1.75–5.13) <0.001 2.2 (1.26–3.82) 0.005  

Peripheral arteriopathy 2.24 (1.24–4.06) 0.008 ns  

Other solid transplants 1.97 (1.02–3.84) 0.044 2.64 (1.32–5.28) 0.006  

Graft loss censored by death 1.61 (1.03–2.53) 0.038 1.95 (1.23–3.09) 0.005  

GDF-15 medium risk tertile 2.16 (1.14–1.44) 0.018 ns 3.24 (1.2–8.8) 0.021 
GDF-15 high risk tertile 3.28 (1.79–6.1) 0.001 2.29 (1.24–4.24) 0.009 4.3 (1.65–11.54) 0.003 

EPTS 1.03 (1.02–1.04) <0.001 1.02 (1.01–1.03) <0.001 

Model 1 included: Age, diabetes, coronary artery disease, peripheral arteriopathy, graft loss censored by death, and GDF-15 tertiles (growth differentiation 
factor 15). Model 2 included: Estimated Post Transplant Survival (EPTS) score and GDF-15 tertiles. HR: hazards ratios; CI: confidence interval. 
 
For all first-time kidney transplant recipients in the cohort 
(n = 264), the median EPTS score was 31% (IQR 11.5–
50.5). Incorporating the EPTS score into multivariate 
analyses did not diminish the prognostic significance of 
GDF-15. Elevated GDF-15 levels remained independently 
associated with mortality, whether considered as a 
continuous variable (logGDF-15 HR 9.46, 95% CI 1.78–
40.41, p = 0.008) or stratified into tertiles (medium-risk 
tertile HR 3.24, 95% CI 1.2–8.8, p = 0.021; high-risk 
tertile HR 4.3, 95% CI 1.65–11.54, p = 0.003). 
Observed mortality rates among first-time recipients were 
3% (n = 8) at 1 year, 5.7% (n = 15) at 3 years, and 7.2% (n 
= 19) at 5 years. In multivariate logistic regression models, 
both EPTS and the high-risk GDF-15 tertile were 

significantly associated with death within 1 and 3 years 
post-transplant, while only the EPTS score predicted 
mortality at 5 years. ROC curve analyses further 
demonstrated that combining GDF-15 tertiles with EPTS 
enhanced the accuracy of mortality prediction at 1 and 3 
years (Figure 2). 
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(a) 

(b) 

 
(c) 

Figure 2. ROC curves illustrating predicted mortality 
probabilities using logistic regression models with 
EPTS, GDF-15 tertiles, and the combination of both. (a) 
1-year mortality: AUC EPTS = 0.81 (CI95% 0.67–
0.89) vs. EPTS + GDF-15 = 0.90 (CI95% 0.81–0.94), 
∆AUC = 0.09, p = 0.039; EPTS vs. GDF-15 alone = 
0.766 (CI95% 0.71–0.81), ∆AUC = 0.04, p = 0.55. (b) 
3-year mortality: AUC EPTS = 0.73 (CI95% 0.59–
0.82) vs. EPTS + GDF-15 = 0.83 (CI95% 0.71–0.90), 
∆AUC = 0.11, p = 0.036; EPTS vs. GDF-15 = 0.77 
(CI95% 0.71–0.82), ∆AUC = 0.04, p = 0.56. (c) 5-year 
mortality: AUC EPTS = 0.69 (CI95% 0.56–0.78) vs. 
EPTS + GDF-15 = 0.74 (CI95% 0.61–0.83), ∆AUC = 
0.06, p = 0.22; EPTS vs. GDF-15 = 0.69 (CI95% 0.62–
0.74), ∆AUC = 0.002, p = 0.98. EPTS: estimated post-
transplant survival; GDF-15: growth differentiation 
factor 15 

 
Assessment of mortality causes indicated that 
cardiovascular events accounted for 35.4% of deaths (n = 

29), whereas malignancy and related treatment 
complications represented 22.0% (n = 18). Univariate Cox 
regression demonstrated a strong association between 
higher GDF-15 levels and cardiovascular mortality: 
medium-risk tertile HR = 5.95 (CI95% 1.32–26.88), p = 
0.02; high-risk tertile HR = 7.91 (CI95% 1.78–35.10), p = 
0.006. This association remained significant after 
adjustment for age, coronary artery disease, diabetes, and 
censored graft loss, with the highest tertile showing HR = 
5.55 (CI95% 1.24–24.7), p = 0.025. In contrast, no 
statistically significant correlation was observed between 
GDF-15 and cancer-related mortality (high-risk tertile HR 
= 0.54, CI95% 0.16–1.76, p = 0.32). 
Risk stratification for mortality following kidney 
transplantation remains complex [36]. In this retrospective 
cohort of 395 renal transplant recipients, pre-transplant 
GDF-15 levels were independently associated with post-
transplant mortality. This relationship persisted after 
controlling for clinical and laboratory factors previously 
linked to adverse outcomes [41–44]. Participants in the 
highest GDF-15 tertile experienced more than double the 
mortality risk. Additionally, combining GDF-15 with the 
EPTS score enhanced early post-transplant mortality 
prediction, highlighting its potential as a useful biomarker 
in evaluating transplant candidates and optimizing organ 
allocation, especially during the first critical post-
transplant years. 
Although prior research has evaluated GDF-15 in general 
populations and in CKD patients [1], this study is the first, 
to our knowledge, to investigate its prognostic value 
specifically in kidney transplant candidates. Previous 
studies in CKD and hemodialysis populations reported 
that elevated GDF-15 was associated with increased 
mortality, particularly in the early post-transplant period 
[24, 25, 45]. Similarly, our findings indicate that GDF-15 
improves early post-transplant mortality prediction. 
Recent reports also suggest a substantial decrease in GDF-
15 after kidney transplantation, which correlates with 
improved renal function and reduced myocardial stress as 
indicated by NT-proBNP levels [27, 29]. 
Our analysis of cause-specific mortality confirmed the 
strong relationship of GDF-15 with cardiovascular death, 
the leading cause of mortality among kidney transplant 
recipients [32, 33]. In contrast, no significant association 
was observed for cancer-related mortality, possibly due to 
the limited number of malignancy-related deaths or the 
predominant influence of cardiovascular burden on GDF-
15 levels in this population. 
In healthy individuals, GDF-15 increases with aging (the 
primary determinant in most studies) and with smoking, 
whereas its relationship with BMI appears variable [1]. In 
CKD cohorts, higher levels have been linked with female 
sex, older age, active smoking, and diabetes [24]. In our 
study, elevated GDF-15 was associated with older age and 
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longer renal replacement therapy duration, but not with 
other clinical or laboratory parameters, including sex or 
diabetes. These observations are consistent with prior 
dialysis studies, highlighting the influence of cumulative 
renal history and nutritional status on GDF-15, which in 
turn may contribute to cardiovascular events and mortality 
[25, 26]. Notably, our study did not find an independent 
association between GDF-15 and dialysis modality, 
contrasting with prior findings [29], suggesting further 
research is warranted to clarify this aspect. 
In addition, several questions regarding the 
pathophysiological role of GDF-15 remain unresolved. As 
previously noted, this protein is minimally expressed in 
healthy tissues and is upregulated in response to diverse 
forms of cellular injury. However, the precise source of 
GDF-15 production in patients with chronic kidney 
disease (CKD) is not well defined, as most prior studies 
have focused on its utility as a biomarker rather than as a 
mediator of biological responses. Nair et al. [19] reported 
GDF-15 expression in renal tissue, correlating with 
circulating levels and associating with a higher risk of 
CKD progression. In our cohort, GDF-15 did not correlate 
with renal history, including primary kidney disease, 
preemptive transplant status, or modality of renal 
replacement therapy (RRT). Given that all participants had 
advanced CKD, it is plausible that variations in GDF-15 
levels may originate from other tissues, such as the 
myocardium or vascular system. Therefore, further 
investigations are necessary to delineate the molecular 
pathways involving GDF-15 and determine whether it 
functions solely as a prognostic marker or also plays a 
causal role in mortality. Clarifying this distinction is 
essential for translating these findings into clinical 
practice. 
Numerous markers of post-transplant mortality have been 
studied to date, yet their practical utility remains uncertain 
[37]. Considering the potential benefits of risk 
stratification in this high-risk population, advances in this 
field are crucial for improving transplantation outcomes. 
Imaging modalities, including echocardiography and 
cardiac CT scans, are commonly employed pre-transplant, 
although their effectiveness in reducing cardiovascular 
morbidity and mortality post-transplant has not been 
conclusively demonstrated [36, 46]. Combining laboratory 
biomarkers with imaging may enhance prognostic 
accuracy, enable more targeted use of imaging studies, and 
provide objective metrics less prone to observer 
variability. Among laboratory biomarkers, candidates 
such as cardiac troponin and soluble ST2 have shown 
promise, though their incremental value over established 
clinical risk models remains to be demonstrated [47–50]. 
In our study, GDF-15 fulfilled this role, likely due to its 
pleiotropic effects on multiple pathogenic pathways 
relevant to kidney transplant candidates. Additionally, a 

recently developed fully automated 
electrochemiluminescence immunoassay for GDF-15 has 
demonstrated robust performance under clinical 
conditions, potentially facilitating widespread, cost-
effective measurement [51]. 
The strengths of this study include several factors: first, a 
relatively large cohort with standardized sample collection 
and GDF-15 analysis performed in a single laboratory; 
second, use of a prospectively maintained renal transplant 
database with a minimum five-year follow-up and no 
patient loss during the study; and third, demonstration that 
GDF-15 enhances the prognostic utility of the widely 
validated EPTS score for kidney transplant candidates. 
Several limitations must also be acknowledged. Our 
cohort was relatively homogenous, predominantly 
Caucasian, with grafts primarily from donors after brain 
death, which limits generalizability. Additionally, we 
could not compare GDF-15 with imaging or 
anthropometric measures (e.g., echocardiography, intima-
media thickness, ankle–brachial index, pulse wave 
velocity) as these are not routinely performed in all 
transplant candidates at our center. Finally, GDF-15 was 
measured only once per patient, precluding assessment of 
post-transplant changes in biomarker levels and the 
prognostic significance of such dynamics. 
In conclusion, our findings support an independent 
association between elevated pre-transplant GDF-15 
levels and post-transplant mortality, while also enhancing 
the predictive accuracy of the EPTS score, a validated risk 
assessment tool currently used in kidney transplant 
candidates. As an emerging biomarker, further research is 
warranted to validate these results, elucidate the 
mechanisms underlying GDF-15 regulation, and explore 
potential therapeutic implications, ultimately aiming to 
improve outcomes in this population. 
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