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Abstract 

Heart failure (HF) is a common and serious condition, yet identifying individuals at greatest 

risk—especially before symptoms appear—remains a challenge. In this study, we introduce 

and validate a new genetic testing approach designed to predict HF susceptibility, 

leveraging data from three separate Australian and US cohorts. The first phase utilized the 

Baker Biobank case–control cohort, revealing 41 genetic variants associated with HF risk 

through genome-wide association and interaction analyses. A second phase expanded the 

panel with 29 additional single-nucleotide polymorphisms, and combining both phases 

produced a comprehensive test demonstrating strong predictive performance, with an Area 

Under the Curve (AUC) of 0.93 and balanced accuracy of 0.89. Participants identified as 

high genetic risk in the Baker Biobank cohort showed an odds ratio of 533.2. External 

validation in the Busselton Health Study and Atherosclerosis Risk in Communities cohorts 

confirmed the test’s reliability, with AUCs of 0.83 and 0.72, balanced accuracies of 0.76 

and 0.67, and odds ratios of 12.3 and 4.6, respectively. These results highlight the 

significant contribution of genetic factors to HF and indicate that this test could provide a 

powerful tool for early, personalized HF risk prediction. 
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Introduction 

Heart failure (HF) continues to pose a serious public health 

challenge globally, affecting more than 26 million 

individuals and showing rising prevalence among older 

populations [1]. In the United States, forecasts suggest that 

by 2030 over 8 million people will live with HF, with 

direct healthcare expenditures (adjusted to 2010 USD) 

expected to escalate from USD 21 billion to USD 53 

billion [2]. HF is a multifactorial syndrome in which the 

heart is unable to pump blood effectively or fill 

adequately, commonly presenting as either systolic or 

diastolic dysfunction [3, 4]. Systolic HF is characterized 

by weakened myocardial contraction and reduced ejection 

fraction, often resulting from myocardial infarction or 

other cardiac injuries [5], whereas diastolic HF involves 

stiffened ventricular walls that impede filling despite 

normal ejection fraction, frequently linked to hypertension 

and age-related myocardial remodeling [6]. 

The development of HF is driven by intricate interactions 

among hemodynamic stress, neurohormonal 

dysregulation, and cellular remodeling in the myocardium 

[7]. Structural adaptations such as cardiac hypertrophy and 

chamber dilation, coupled with processes like apoptosis 

and fibrosis, contribute to disease progression. Risk 

factors encompass both clinical and lifestyle components. 

Hypertension imposes extra cardiac load, coronary artery 

disease compromises myocardial performance, and 

diabetes independently increases susceptibility. Lifestyle 
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behaviors—including smoking, obesity, and unhealthy 

diets—further exacerbate risk [8, 9]. 

Early detection and prevention are critical, yet 

conventional population-level HF risk tools, such as PCP-

HF equations, offer only modest accuracy and are heavily 

weighted toward age rather than capturing the full 

spectrum of contributing factors [10]. Identifying high-

risk individuals before clinical manifestations appear 

remains particularly challenging [11]. Diagnosing HF is 

complicated by symptom variability and overlap with 

other conditions [3, 12]. Patients may present with fatigue, 

shortness of breath, edema, or weight gain, symptoms that 

are often nonspecific and can delay recognition [13]. 

Standard diagnostic approaches, though essential, have 

limitations. Echocardiography evaluates cardiac structure 

and function but may fail to detect early or subtle HF 

changes [14]. Biomarkers such as BNP and NT-proBNP 

assist in diagnosis but are influenced by factors like renal 

function, age, and body mass, which can complicate 

interpretation [15]. Misdiagnosis or delayed recognition 

can worsen outcomes, increase hospitalization rates, and 

raise mortality risk [16]. There is a clear need for more 

accurate, timely diagnostic strategies to improve patient 

management and prognosis [17]. 

Genetic testing presents a promising avenue to identify 

individuals at elevated HF risk long before clinical signs 

appear [18]. Despite this potential, no reliable genetic risk 

assessment exists for HF [19]. To address this gap, we 

aimed to develop a genetic test using three rigorously 

characterized independent cohorts. In this study, we 

present the design, validation, and predictive performance 

of a genetic assay capable of detecting individuals at 

increased HF risk. 

Results and Discussion 

First-phase HF genetic test development 

The first phase focused on generating a genetic model to 

discriminate HF cases from controls within the Baker 

Biobank (BB) cohort. Controls were participants over 70 

years old with no history of HF. The cohort was split into 

discovery and testing subsets. Within the training dataset, 

23 single-nucleotide polymorphisms (SNPs) showing the 

strongest associations were selected, alongside 41 SNPs 

demonstrating significant interactions. 

A multi-layer deep neural network (DNN) was employed 

to enhance predictive accuracy by iteratively adjusting 

weights from prior training cycles. The selected SNP 

genotypes were input into the DNN to construct a 

predictive model capable of distinguishing HF cases from 

controls. 

From this model, a Quantitative Risk Score (QRS) was 

derived for each participant. The risk threshold was set at 

the 90th percentile of control scores (0.402), meaning only 

10% of controls exceeded this value. Individuals with 

QRS above this threshold were classified as high-risk, 

whereas those below were considered low-risk. 

The model achieved an odds ratio (OR) of 2.53 and a 

hazard ratio (HR) of 5.7, substantially outperforming 

traditional polygenic risk scores (PRSs) for cardiovascular 

disease, which generally show ORs below 2. These results 

demonstrate the potential of this approach to identify 

individuals at elevated HF risk, supporting its application 

in preventive cardiology. 

 

Table 1. Evaluation of the first-phase heart failure (HF) genetic test in the reserved “test set” from the Baker Biobank 

(BB). Statistical analysis of these results yielded a Fisher’s exact test p-value of 4.97 × 10⁻²⁵, an Area Under the Curve 

(AUC) of 0.72, a balanced accuracy (BAC) of 0.67, and an odds ratio (OR) of 2.53. The corresponding hazard ratio (HR) 

was 5.7. 

Genetic Risk No HF HF Cases 

High 530 801 

Low 523 313 

As presented in Table 1, the first-phase test successfully 

identified HF cases, correctly classifying approximately 

72% of them as high-risk. However, its ability to 

accurately recognize control subjects—those without 

HF—was limited. Two factors may explain this 

observation. First, some individuals classified as high-risk 

may develop HF later in life. Second, HF likely arises from 

multiple molecular pathways, each influenced by different 

sets of genetic variants. To address this genetic 

heterogeneity, we designed a second-phase genetic test. 

Development of the second-phase HF genetic test 

For the second-phase analysis, all 41 SNPs used in the first 

test were excluded from the genome build, and association 

studies were conducted specifically on the subset of 

individuals flagged as high-risk by Test 1. Applying the 

same methodological approach as in the first phase, we 

identified 29 additional SNPs to serve as the foundation 

for Test 2. The risk threshold for this test was established 

at the 90th percentile of the control group, corresponding 

to a QRS value of 0.541. Using this cutoff, the 

performance of Test 2 was then assessed in the reserved 

“test set” of BB participants who had been classified as 

high-risk by the initial test (Table 2). 
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Table 2. Evaluation of the second-phase heart failure (HF) genetic test in the reserved validation set. Analysis of these 

results produced a Fisher’s exact test p-value of 8.1 × 10⁻¹⁷⁰, an Area Under the Curve (AUC) of 0.89, a balanced accuracy 

(BAC) of 0.81, and an odds ratio (OR) of 50.29. The hazard ratio (HR), calculated using the full test set including controls 

younger than 70, was 37.4. 

Genetic Risk No HF HF Cases 

High 118 749 

Low 412 52 

Integrating the two genetic HF risk assessments 

The first- and second-phase tests were designed to capture 

complementary aspects of HF’s genetic complexity. To 

generate a comprehensive measure of overall genetic 

susceptibility, we combined the results of both tests, 

producing four distinct participant groups: high-risk on 

both tests (1_1), high-risk only on the first test (1_0), high-

risk only on the second test (0_1), and low-risk on both 

tests (0_0). 

These four groups were further categorized into three 

broader risk tiers: individuals in the 1_1 group were 

classified as high-risk, those in 0_0 as low-risk, and 

participants in 1_0 and 0_1 were designated as 

intermediate-risk. Kaplan–Meier survival curves and the 

corresponding 2 × 2 contingency table (Figure 1 and 

Table 3) illustrate the performance of the combined 

testing approach. The separation of survival trajectories 

across these groups was highly significant, confirming that 

the integrated risk assignments reflect meaningful 

biological differences in HF susceptibility. Most HF cases 

were concentrated within the high- and intermediate-risk 

categories (1_1, 1_0, and 0_1), whereas the low-risk group 

(0_0) contained relatively few cases. The right panel of 

Figure 1 additionally shows the effect of merging the 

intermediate- and high-risk groups, highlighting the 

stratification power of the combined test. 

 

a) 

 

b) 

Figure 1. Kaplan–Meier survival curves depicting the 

genetic risk stratification for heart failure in the 

reserved Baker Biobank (BB) “test set,” which was not 

included in model training. Risk categories were 

determined exclusively from genetic information, 

without using any clinical data. Left panel: The high-

risk group is shown in red, whereas intermediate- and 

low-risk groups are depicted in blue, with shaded 

regions representing 95 percent confidence intervals 

(CI). Right panel: The combined HF test merges 

intermediate- and high-risk individuals, resulting in an 

AUC of 0.93, balanced accuracy (BAC) of 0.89, and an 

odds ratio (OR) of 123.1 (p = 5.6 × 10⁻²²²). Across the 

entire BB cohort, the hazard ratio (HR) for the 

integrated test was 157.6, highlighting its strong 

predictive power. 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Performance metrics for the combined heart failure (HF) genetic test in the reserved “test set” of subjects. Statistical 

comparisons between risk groups yielded the following results: high- versus low-risk individuals, p < 10⁻³⁰⁰ with an odds 

ratio (OR) of 533.2; low- versus intermediate-risk individuals, p = 1.4 × 10⁻⁵⁷ with an OR of 27.5. 

Genetic Risk Group No HF HF Cases 

High 85 902 

Low 603 12 
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The combined HF genetic test demonstrated strong 

predictive power, as reflected in the Fisher’s exact test p-

values and odds ratios shown in Table 3. Individuals 

categorized as high-risk had an odds of developing HF 

more than forty times greater than those in the low-risk 

group. Remarkably, over 90% of high-risk participants 

were diagnosed with HF before reaching 80 years of age, 

whereas fewer than 5% of low-risk participants ever 

developed the condition. The intermediate-risk group 

showed an elevated incidence compared with the low-risk 

group, with approximately half of these individuals 

experiencing HF by age 80. 

External validation of genetic HF risk tests 

To test the generalizability of the genetic risk models, we 

applied them to two independent population cohorts: the 

Atherosclerosis Risk in Communities (ARIC) HF cohort 

and the Busselton Health Study (BHS). Because these 

were population-based studies, the proportion of HF cases 

was considerably lower than in the Baker Biobank case–

control cohort. Test 1 showed significant predictive 

performance in both cohorts, with odds ratios exceeding 4 

in the BHS cohort (Table 4). Test 2 was similarly 

validated. For the combined genetic test—merging 

intermediate- and high-risk groups—the relative risk of 

HF was 2.6 in the ARIC cohort and 10.5 in the BHS cohort 

(Figure 2 and Table 5), indicating that individuals with 

elevated genetic risk were substantially more likely to 

develop HF compared to those at low genetic risk, 

particularly in the BHS population. 

 

a) 

 

b) 

Figure 2. External validation of the combined genetic 

HF risk test in the ARIC cohort (left panel) and the BHS 

cohort (right panel). For the ARIC and BHS cohorts, 

the p-values were 2.3 × 10⁻⁵⁷ and 1.2 × 10⁻⁷⁰, 

respectively. In this analysis, the intermediate- and 

high-risk groups were combined. The red curves 

indicate individuals classified as high-risk, while the 

blue curves represent those at low or intermediate risk. 

Shaded regions correspond to 95% confidence intervals 

(CI). 

 

Table 4. Validation of Test 1 for predicting heart failure (HF) risk in the population-based ARIC and BHS cohorts. Due to 

the design of these studies, HF cases represent a smaller fraction of participants compared with the BB case–control cohort. 

Results are stratified by low- and high-genetic-risk groups and HF status. One-sided p-values from Fisher’s exact test and 

odds ratios (ORs) are provided to facilitate comparison with the BB cohort results shown in Table 1. The 95% confidence 

intervals (CIs) indicate the estimated range of effect sizes and the uncertainty of the OR estimates. The analyses revealed 

highly significant associations, including a relative risk (RR) of 4.18 in the BHS cohort. 

Cohort Genetic Risk Group HF Cases No HF OR 95% CI p 

ARIC 
Low 342 507 

1.7 1.45–1.99 3.1 × 10⁻⁸ 
High 562 498 

BHS 
Low 57 1870 

4.6 2.97–7.12 1.2 × 10⁻³⁰ 
High 262 1853 

 

Table 5. Validation of the combined heart failure (HF) genetic tests in the ARIC and BHS cohorts. Participants were 

classified into low- and high-genetic-risk groups and stratified by HF status. One-sided p-values (p) and odds ratios (ORs) 

are provided to illustrate the enhanced predictive accuracy of the combined tests relative to Test 1 alone. The 95% 

confidence intervals (CIs) reflect the precision of the OR estimates. The relative risk (RR) values were 1.97 for ARIC and 

2.28 for BHS. 

Cohort Genetic Risk Group HF Cases No HF 95% CI p OR 

ARIC 

 

Low 241 630 
3.06–6.91 2.3 × 10⁻⁵⁷ 4.6 

High 663 375 
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BHS 
Low 36 2272 

7.07–21.39 1.2 × 10⁻⁷⁰ 12.3 
High 283 1451 

Comparison with clinical risk prediction 

In the BB cohort, 1,604 participants without a history of 

HF at baseline were analyzed to compare genetic versus 

clinical risk prediction. Thirty commonly assessed clinical 

factors—including demographics (age, sex, 

socioeconomic status), lifestyle (alcohol use, smoking), 

anthropometrics (BMI, waist circumference), blood 

pressure, serum biomarkers (HDL, LDL, triglycerides, 

glucose, total cholesterol), comorbidities (stroke, diabetes, 

MI, hypertension), and use of medications for cholesterol, 

blood pressure, or diabetes—were incorporated into a Cox 

proportional hazards model to estimate the risk of 

developing HF over an average follow-up of 10.1 years. 

The resulting model produced a C-statistic of 0.75. By 

comparison, the genetic test alone achieved a higher 

predictive value with a C-statistic of 0.804. Since HF 

incidence is higher in older men, including age and sex 

further increased the C-statistic to 0.835, while adding the 

remaining clinical variables yielded only a modest 

increase, reaching 0.86. Overall, combining the genetic 

test with all clinical predictors improved discrimination by 

0.11 relative to using clinical variables alone. 

We developed and validated a novel genetic test for HF 

risk across three independent cohorts, representing an 

advance in precision cardiovascular medicine by enabling 

earlier identification of high-risk individuals. The two-

tiered design of the test offers insight into the complex 

genetic underpinnings of HF. 

The first-phase test, comprising 41 variants, outperformed 

conventional polygenic risk scores (PRSs) typically 

applied to cardiovascular conditions, which generally 

generate hazard ratios below 1.5 [20]. This enhanced 

performance highlights the ability of our approach to 

capture meaningful genetic contributions to HF risk, 

consistent with evidence that both common and rare 

variants, together with environmental interactions, 

influence disease susceptibility [21, 22]. 

The second-phase test targeted individuals flagged as 

high-risk in the first phase and incorporated 29 additional 

SNPs, refining risk prediction and addressing HF’s genetic 

heterogeneity. This two-step approach markedly improved 

performance, achieving an AUC of 0.93 and balanced 

accuracy of 0.89 in the BB cohort. This strategy builds on 

prior findings demonstrating that patient stratification 

strengthens the detection of genetic effects [23, 24], 

emphasizing the value of iterative refinement in 

constructing robust genetic risk models. The integration of 

machine learning methods for risk stratification further 

enhances predictive capability, setting a high standard for 

genetic risk assessment in cardiovascular disease. 

Validation in geographically and ethnically diverse 

cohorts (ARIC and BHS) confirmed the test’s 

reproducibility. It also showed predictive utility in 

African-American participants within ARIC, indicating 

potential cross-ethnic applicability. Nevertheless, 

performance differences across cohorts underscore the 

need for population-specific refinement, reflecting known 

variations in allele frequencies and linkage disequilibrium 

patterns across ethnic groups [25]. Future research should 

focus on identifying population-specific variants to 

optimize predictive accuracy in diverse populations. 

Limitations of this study include the predominance of 

European ancestry (73%) in the BB cohort, with 27% 

representing other ethnicities, which may restrict 

generalizability. Despite adjustment for population 

structure via principal component analysis (PCA), residual 

confounding cannot be excluded. Age and sex differences 

between cases and controls could introduce bias, given 

that HF is more prevalent in older men; in the BB cohort, 

males represented 47% of controls and 53% of cases. 

However, the genetic test successfully identified women 

who subsequently developed HF. Genotype imputation 

was required in ARIC and BHS for missing data, which 

could slightly reduce accuracy. 

HF diagnosis relied on ICD codes assigned independently 

within each cohort. Although some variability may arise 

from this approach, prior studies have demonstrated that 

ICD coding for HF is generally reliable [26]. The large 

cohort sizes further minimize potential inconsistencies, 

reinforcing the robustness of our findings. 

Our investigation primarily targeted the genetic 

underpinnings of HF, though environmental and lifestyle 

elements—such as dietary habits, physical activity, 

smoking, and socioeconomic factors—were only partially 

considered, leaving the possibility of residual 

confounding. Additional influences, including 

comorbidities and medication usage (e.g., treatments for 

hypertension, diabetes, or other cardiovascular 

conditions), may independently affect HF risk. 

Remarkably, our findings demonstrated that the genetic 

markers identified improved risk prediction beyond 

conventional clinical measures, suggesting they capture 

additional hereditary components. Environmental 

exposures may explain the limited number of HF cases 

observed among participants classified as genetically low-

risk. Furthermore, survivorship bias—stemming from the 

inclusion of only controls older than 70 without HF—

could lead to underestimation of genetic effects. 

Expanding validation efforts and integrating these factors 

into the model are essential for enhancing reliability. 
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HF represents a genetically and clinically heterogeneous 

condition, encompassing multiple subtypes such as 

myocardial ischemia, valvular disease, arrhythmias, and 

cardiomyopathies [27, 28]. Each subtype is characterized 

by distinct pathophysiology, which can influence genetic 

test performance. While our two-step testing framework 

addressed some of this heterogeneity, predictive accuracy 

may still vary across HF forms. For example, Joseph et al. 

[28] recently highlighted genetic differences between 

HFrEF and HFpEF, where most loci were associated with 

coronary artery disease and hypertension. Future 

investigations should assess test performance across HF 

subtypes and consider incorporating echocardiographic 

parameters to refine predictions further. 

The translation of genetic HF testing into clinical settings 

involves ethical and logistical challenges. Conveying risk 

information to patients requires careful counseling to 

ensure comprehension and informed decision-making. 

Nevertheless, identifying individuals with elevated 

genetic risk before clinical manifestation offers 

opportunities for proactive management, including 

lifestyle interventions such as weight control, blood 

pressure management, and adherence to a cardioprotective 

diet, which may delay or prevent HF onset. 

This study also highlights directions for future research. 

The SNPs identified may point to novel regulatory 

mechanisms, particularly in non-coding genomic regions 

[29], influencing gene expression through enhancer 

activity or chromatin remodeling. Investigating these 

mechanisms could shed light on HF pathogenesis and 

reveal potential therapeutic targets. Incorporating data 

from additional ethnic populations and integrating 

environmental and lifestyle variables could enhance both 

predictive accuracy and clinical relevance. Longitudinal 

studies will also be crucial to evaluate test performance 

over time and its utility in monitoring disease progression 

or response to interventions [30]. 

Our results align with recent GWAS and multi-trait 

analyses of HF, which identified several loci associated 

with disease risk [31, 32]. Eight SNPs in our test 

overlapped with previously reported loci, supporting the 

validity of our approach. Non-overlapping SNPs likely 

reflect differences in study design, particularly our focus 

on SNP–SNP interactions, as well as variations in study 

populations and specific HF-related traits. These findings 

underscore the need for collaborative efforts to standardize 

genetic data and optimize HF risk prediction models. 

Materials and Methods 

Cohort descriptions 

Genetic and clinical data were collected from three distinct 

cohorts with varied demographic and clinical 

characteristics: 

Baker Biobank (BB) [33]: Individuals aged 18–69 were 

enrolled between 2000 and 2011, with detailed data 

collected on demographics, lifestyle, anthropometrics, 

medical history, medication use, and blood biomarkers. 

Biological samples included Guthrie cards, plasma, serum, 

buffy coat, and whole blood preserved in Tempus tubes for 

RNA extraction; some samples also contained extracted 

DNA and RNA. Data were linked to echocardiography, 

hospital admissions, pathology, and mortality records. HF 

status was determined from medical records at enrollment 

or ICD-coded linked datasets [34]. DNA from all HF cases 

and controls over 70 without HF was genotyped using the 

Illumina GSA array at the Australian Genome Research 

Facility, covering more than 700,000 SNPs. 

Atherosclerosis Risk in Communities (ARIC) [35]: This 

community-based study followed 15,792 adults aged 45–

64 from multiple ethnic groups to monitor MI, CHD, and 

mortality. Its primary goal was to identify factors 

contributing to subclinical atherosclerosis and CHD. 

Clinical and genetic data were accessed through NIH 

dbGAP. 

Busselton Health Study (BHS) [36]: As one of the longest-

running epidemiologic programs globally, BHS tracks 

residents of Busselton, Western Australia, with some 

participants enrolled since 1966. The study focuses on 

cardiovascular and respiratory risk factors through 

population-wide surveys, longitudinal follow-up, and 

collection of serum and DNA. Genetic and clinical data 

from a 1990s survey were made available by the study 

coordinators upon approval. 

Genetic analyses 

We applied three separate approaches to construct genetic 

signatures based on disease-related data structures and 

associated weights, utilizing both conventional association 

analysis and SNP-SNP interaction searches implemented 

in Plink 1.9 (http://pngu.mgh.harvard.edu/purcell/plink/, 

last accessed 14 February 2025) [37]. Initially, a case–

control study was established, selecting controls from the 

BB cohort who were over 70 years old and free of HF, to 

reduce the likelihood of including younger individuals 

who might develop HF later, consistent with strategies 

used in other late-onset disease genetics studies (e.g., 

[38]). The dataset was randomly split into a discovery 

subset (500 participants) and a testing subset (2167 

participants). The discovery subset was used to implement 

a multi-stage deep neural network (DNN) pipeline, 

efficiently utilizing extensive weight coverage while 

incorporating weights from previous cycles. To minimize 

demographic confounding, only individuals of European 

descent were included in the training set, with ancestry 

verified via PCA against known cohorts; these individuals 

represented 73% of the BB cohort. The analysis required 

substantial computational resources, performed on the 
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Pawsey Supercomputer Facility (www.pawsey.org.au, last 

accessed 16 February 2025). This pipeline identified 41 

SNPs with significant associations and interactions, 

enabling the model to effectively discriminate cases from 

controls. 

Significant SNP-SNP interactions were integrated into an 

artificial neural network, serving as weighted factors in the 

construction of a quantitative risk score (QRS), thereby 

enhancing predictive accuracy. Statistical models included 

data from all participants to comprehensively define risk, 

and each subject’s QRS was calculated. Individuals were 

classified as high- or low-risk using QRS thresholds set at 

the 90th percentile of the control group. 

A second-phase test focused exclusively on high-risk 

individuals identified in the first test, including all true 

positives and false positives. By excluding the SNPs from 

Test 1, 29 new SNPs were identified to define risk for this 

second-phase assessment. Both tests were developed using 

only whole-genome genotyped data. After assigning risk 

via Tests 1 and 2, validation was conducted in a reserved 

BB test set, followed by further confirmation in 

independent ARIC and BHS cohorts. 

Genotype imputation 

All SNPs used in the BB cohort were directly genotyped; 

however, variations in reference panels and genotyping 

methods across cohorts caused substantial missingness for 

several of the 41 HF-associated SNPs. Specifically, in the 

ARIC and BHS cohorts, eight SNPs from Test 1 and five 

SNPs from Test 2 exhibited low genotyping quality, 

resulting in missing data for roughly 10% of individuals. 

To remedy this, genotype imputation was performed using 

the TopMed Imputation Server with the Michigan 

Imputation Server pipeline employing Minimac4 [39], 

based on GRCh38/hg38 reference data. Older genome 

builds for the BHS cohort were lifted over to 

GRCh38/hg38. Accuracy of imputation was assessed by 

comparing the imputed SNPs to their original genotyped 

values, achieving over 99% concordance, a substantial 

improvement over the previous 68% accuracy obtained 

with the 1000 Genomes Panel in hg19. 

Statistical analyses 

Statistical significance for the analyses was assessed using 

Fisher’s exact test via the online tool 

(https://www.langsrud.com/fisher.htm) (last accessed 16 

February 2025), with a two-sided p-value below 10E-5 

considered significant. Additional diagnostic measures, 

including the odds ratio (OR) and relative risk (RR), were 

computed using standard procedures (see ref. [40] for a 

review), with significance defined as OR > 2 or RR > 1.5. 

The OR quantifies the relationship between an exposure 

(e.g., genetic predisposition) and an outcome (e.g., heart 

failure), where OR > 1 indicates higher odds of the 

outcome with the exposure, and OR < 1 implies a 

protective effect. The ARIC and BHS cohorts, being 

community-based, were evaluated using RR, whereas the 

BB cohort, as a case–control study, employed OR for 

analysis. 

Risk prediction performance was visualized using 

Kaplan–Meier (KM) survival curves, with the x-axis 

representing temporal variables such as age at diagnosis, 

and the y-axis showing the proportion of disease-free 

individuals. KM curves for different genetic risk groups 

were generated via Eureka Statistics 

(https://eurekastatistics.com) (last accessed 16 February 

2025), which also provided 95% confidence intervals. 

Greater separation between curves indicates more 

pronounced differences between groups. 

Balanced Accuracy (BAC), a metric particularly useful for 

imbalanced datasets in classification tasks, was considered 

meaningful if exceeding 0.6. BAC reflects model 

performance by averaging sensitivity (true positive rate) 

and specificity (true negative rate), offering a more holistic 

assessment of classification across both classes. 

To compare the genetic tests with HF prediction based on 

conventional clinical variables, survival analyses were 

conducted on 1604 participants free of HF at baseline 

using multivariable Cox regression. In the BB cohort, 30 

previously established HF-associated variables were 

included, and model discrimination was evaluated via C-

statistics, paralleling prior analyses [41]. The model 

included all variables without selection, prioritizing 

maximum discriminatory ability over parsimony for cross-

cohort applicability. Missing clinical data were handled 

through multiple imputation with chained equations (10 

datasets) using the “mice” package in R v4.2.2, with 

pooled results calculated via Rubin’s rules. 

To address the risk of Type I errors due to multiple 

simultaneous hypotheses, Bonferroni correction was 

applied to control the family-wise error rate (FWER), 

thereby reducing the probability of false positives across 

all statistical tests. 

Conclusion 

Overall, this study advances understanding of HF genetics 

by developing a refined genetic test capable of predicting 

HF risk. This tool holds promise for enabling early 

intervention and tailoring personalized treatment 

strategies. Although further validation and integration 

with non-genetic factors are needed, the findings offer 

potential to improve outcomes in HF, a condition 

associated with substantial morbidity and mortality 

worldwide. Future work should focus on refining the test 

and ensuring its ethical clinical application, and we 

encourage collaborative efforts to extend its use to diverse 

populations. 
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