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Abstract

Heart failure (HF) is a common and serious condition, yet identifying individuals at greatest
risk—especially before symptoms appear—remains a challenge. In this study, we introduce
and validate a new genetic testing approach designed to predict HF susceptibility,
leveraging data from three separate Australian and US cohorts. The first phase utilized the
Baker Biobank case—control cohort, revealing 41 genetic variants associated with HF risk
through genome-wide association and interaction analyses. A second phase expanded the
panel with 29 additional single-nucleotide polymorphisms, and combining both phases
produced a comprehensive test demonstrating strong predictive performance, with an Area
Under the Curve (AUC) of 0.93 and balanced accuracy of 0.89. Participants identified as
high genetic risk in the Baker Biobank cohort showed an odds ratio of 533.2. External
validation in the Busselton Health Study and Atherosclerosis Risk in Communities cohorts
confirmed the test’s reliability, with AUCs of 0.83 and 0.72, balanced accuracies of 0.76
and 0.67, and odds ratios of 12.3 and 4.6, respectively. These results highlight the
significant contribution of genetic factors to HF and indicate that this test could provide a
powerful tool for early, personalized HF risk prediction.
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Introduction

Heart failure (HF) continues to pose a serious public health
challenge globally, affecting more than 26 million
individuals and showing rising prevalence among older
populations [1]. In the United States, forecasts suggest that
by 2030 over 8 million people will live with HF, with
direct healthcare expenditures (adjusted to 2010 USD)
expected to escalate from USD 21 billion to USD 53
billion [2]. HF is a multifactorial syndrome in which the
heart is unable to pump blood effectively or fill
adequately, commonly presenting as either systolic or
diastolic dysfunction [3, 4]. Systolic HF is characterized
by weakened myocardial contraction and reduced ejection
fraction, often resulting from myocardial infarction or

other cardiac injuries [5], whereas diastolic HF involves
stiffened ventricular walls that impede filling despite
normal ejection fraction, frequently linked to hypertension
and age-related myocardial remodeling [6].

The development of HF is driven by intricate interactions
among hemodynamic stress, neurohormonal
dysregulation, and cellular remodeling in the myocardium
[7]. Structural adaptations such as cardiac hypertrophy and
chamber dilation, coupled with processes like apoptosis
and fibrosis, contribute to disease progression. Risk
factors encompass both clinical and lifestyle components.
Hypertension imposes extra cardiac load, coronary artery
disease compromises myocardial performance, and
diabetes independently increases susceptibility. Lifestyle
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behaviors—including smoking, obesity, and unhealthy Results and Discussion

diets—further exacerbate risk [8, 9].

Early detection and prevention are critical, yet First-phase HF genetic test development
conventional population-level HF risk tools, such as PCP- The first phase focused on generating a genetic model to
HF equations, offer only modest accuracy and are heavily discriminate HF cases from controls within the Baker
weighted toward age rather than capturing the full Biobank (BB) cohort. Controls were participants over 70
spectrum of contributing factors [10]. Identifying high- years old with no history of HF. The cohort was split into
risk individuals before clinical manifestations appear discovery and testing subsets. Within the training dataset,
remains particularly challenging [11]. Diagnosing HF is 23 single-nucleotide polymorphisms (SNPs) showing the
complicated by symptom variability and overlap with strongest associations were selected, alongside 41 SNPs
other conditions [3, 12]. Patients may present with fatigue, demonstrating significant interactions.

shortness of breath, edema, or weight gain, symptoms that A multi-layer deep neural network (DNN) was employed
are often nonspecific and can delay recognition [13]. to enhance predictive accuracy by iteratively adjusting
Standard diagnostic approaches, though essential, have weights from prior training cycles. The selected SNP
limitations. Echocardiography evaluates cardiac structure genotypes were input into the DNN to construct a
and function but may fail to detect early or subtle HF predictive model capable of distinguishing HF cases from
changes [14]. Biomarkers such as BNP and NT-proBNP controls.

assist in diagnosis but are influenced by factors like renal From this model, a Quantitative Risk Score (QRS) was
function, age, and body mass, which can complicate derived for each participant. The risk threshold was set at
interpretation [15]. Misdiagnosis or delayed recognition the 90th percentile of control scores (0.402), meaning only
can worsen outcomes, increase hospitalization rates, and 10% of controls exceeded this value. Individuals with
raise mortality risk [16]. There is a clear need for more QRS above this threshold were classified as high-risk,
accurate, timely diagnostic strategies to improve patient whereas those below were considered low-risk.
management and prognosis [17]. The model achieved an odds ratio (OR) of 2.53 and a
Genetic testing presents a promising avenue to identify hazard ratio (HR) of 5.7, substantially outperforming
individuals at elevated HF risk long before clinical signs traditional polygenic risk scores (PRSs) for cardiovascular
appear [18]. Despite this potential, no reliable genetic risk disease, which generally show ORs below 2. These results
assessment exists for HF [19]. To address this gap, we demonstrate the potential of this approach to identify
aimed to develop a genetic test using three rigorously individuals at elevated HF risk, supporting its application
characterized independent cohorts. In this study, we in preventive cardiology.

present the design, validation, and predictive performance
of a genetic assay capable of detecting individuals at
increased HF risk.

Table 1. Evaluation of the first-phase heart failure (HF) genetic test in the reserved “test set” from the Baker Biobank
(BB). Statistical analysis of these results yielded a Fisher’s exact test p-value of 4.97 x 1072, an Area Under the Curve
(AUC) of 0.72, a balanced accuracy (BAC) of 0.67, and an odds ratio (OR) of 2.53. The corresponding hazard ratio (HR)
was 5.7.

Genetic Risk No HF HF Cases
High 530 801
Low 523 313
As presented in Table 1, the first-phase test successfully For the second-phase analysis, all 41 SNPs used in the first
identified HF cases, correctly classifying approximately test were excluded from the genome build, and association
72% of them as high-risk. However, its ability to studies were conducted specifically on the subset of
accurately recognize control subjects—those without individuals flagged as high-risk by Test 1. Applying the
HF—was limited. Two factors may explain this same methodological approach as in the first phase, we
observation. First, some individuals classified as high-risk identified 29 additional SNPs to serve as the foundation
may develop HF later in life. Second, HF likely arises from for Test 2. The risk threshold for this test was established
multiple molecular pathways, each influenced by different at the 90th percentile of the control group, corresponding
sets of genetic variants. To address this genetic to a QRS wvalue of 0.541. Using this cutoff, the
heterogeneity, we designed a second-phase genetic test. performance of Test 2 was then assessed in the reserved
“test set” of BB participants who had been classified as
Development of the second-phase HF genetic test high-risk by the initial test (Table 2).
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Table 2. Evaluation of the second-phase heart failure (HF) genetic test in the reserved validation set. Analysis of these
results produced a Fisher’s exact test p-value of 8.1 x 107'7°, an Area Under the Curve (AUC) of 0.89, a balanced accuracy
(BAC) of 0.81, and an odds ratio (OR) of 50.29. The hazard ratio (HR), calculated using the full test set including controls

younger than 70, was 37.4.

Genetic Risk
High
Low

No HF

118
412

HF Cases
749
52

Integrating the two genetic HF risk assessments

The first- and second-phase tests were designed to capture
complementary aspects of HF’s genetic complexity. To
generate a comprehensive measure of overall genetic
susceptibility, we combined the results of both tests,
producing four distinct participant groups: high-risk on
both tests (1_1), high-risk only on the first test (1_0), high-
risk only on the second test (0 1), and low-risk on both
tests (0_0).

These four groups were further categorized into three
broader risk tiers: individuals in the 1 1 group were
classified as high-risk, those in 0 0 as low-risk, and
participants in 1 0 and O 1 were designated as
intermediate-risk. Kaplan—Meier survival curves and the
corresponding 2 X 2 contingency table (Figure 1 and
Table 3) illustrate the performance of the combined
testing approach. The separation of survival trajectories
across these groups was highly significant, confirming that
the integrated risk assignments reflect meaningful
biological differences in HF susceptibility. Most HF cases
were concentrated within the high- and intermediate-risk
categories (1 1,1 0,and 0 1), whereas the low-risk group
(0_0) contained relatively few cases. The right panel of
Figure 1 additionally shows the effect of merging the
intermediate- and high-risk groups, highlighting the
stratification power of the combined test.
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Figure 1. Kaplan—Meier survival curves depicting the
genetic risk stratification for heart failure in the
reserved Baker Biobank (BB) “test set,” which was not
included in model training. Risk categories were
determined exclusively from genetic information,
without using any clinical data. Left panel: The high-
risk group is shown in red, whereas intermediate- and
low-risk groups are depicted in blue, with shaded
regions representing 95 percent confidence intervals
(CI). Right panel: The combined HF test merges
intermediate- and high-risk individuals, resulting in an
AUC 0f 0.93, balanced accuracy (BAC) of 0.89, and an
odds ratio (OR) of 123.1 (p = 5.6 x 107222). Across the
entirc BB cohort, the hazard ratio (HR) for the
integrated test was 157.6, highlighting its strong
predictive power.

Table 3. Performance metrics for the combined heart failure (HF) genetic test in the reserved “test set” of subjects. Statistical
comparisons between risk groups yielded the following results: high- versus low-risk individuals, p < 1073 with an odds
ratio (OR) of 533.2; low- versus intermediate-risk individuals, p = 1.4 x 1077 with an OR of 27.5.

Genetic Risk Group No HF HF Cases
High 85 902
Low 603 12
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The combined HF genetic test demonstrated strong
predictive power, as reflected in the Fisher’s exact test p-
values and odds ratios shown in Table 3. Individuals
categorized as high-risk had an odds of developing HF
more than forty times greater than those in the low-risk
group. Remarkably, over 90% of high-risk participants
were diagnosed with HF before reaching 80 years of age,
whereas fewer than 5% of low-risk participants ever
developed the condition. The intermediate-risk group

showed an elevated incidence compared with the low-risk ™ Agf"m mi’m:‘; H:r" Faﬂ’c m; o 4o %0
group, with approximately half of these individuals a)

experiencing HF by age 80.

@ ® ©

2 38 88

PR A R
'
'

Proportion Disease-free (%)
- N w » w
o o o O o
Plagh gvlity

=

- -

g g

External validation of genetic HF risk tests

©
1=
L

~
o
N

To test the generalizability of the genetic risk models, we
applied them to two independent population cohorts: the
Atherosclerosis Risk in Communities (ARIC) HF cohort
and the Busselton Health Study (BHS). Because these
were population-based studies, the proportion of HF cases
was considerably lower than in the Baker Biobank case—

control cohort. Test 1 showed significant predictive 10 20 3 40 so 60 70 8 90
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performance in both cohorts, with odds ratios exceeding 4
in the BHS cohort (Table 4). Test 2 was similarly b)

validated. For the combined genetic test—merging Figure 2. External validation of the combined genetic
intermediate- and high-risk groups—the relative risk of HEF risk test in the ARIC cohort (left panel) and the BHS
HF was 2.6 in the ARIC cohort and 10.5 in the BHS cohort cohort (right panel). For the ARIC and BHS cohorts,
(Figure 2 and Table 5), indicating that individuals with the p-values were 2.3 > 107 and 1.2 x 107,
elevated genetic risk were substantially more likely to respectively. In this analysis, the intermediate- and

develop HF compared to those at low genetic risk, high-risk groups were combined. The red curves
particularly in the BHS population. indicate individuals classified as high-risk, while the

blue curves represent those at low or intermediate risk.
Shaded regions correspond to 95% confidence intervals
(CD).

Table 4. Validation of Test 1 for predicting heart failure (HF) risk in the population-based ARIC and BHS cohorts. Due to
the design of these studies, HF cases represent a smaller fraction of participants compared with the BB case—control cohort.
Results are stratified by low- and high-genetic-risk groups and HF status. One-sided p-values from Fisher’s exact test and
odds ratios (ORs) are provided to facilitate comparison with the BB cohort results shown in Table 1. The 95% confidence
intervals (CIs) indicate the estimated range of effect sizes and the uncertainty of the OR estimates. The analyses revealed
highly significant associations, including a relative risk (RR) of 4.18 in the BHS cohort.

Cohort Genetic Risk Group HF Cases No HF OR 95% CI1 P
Low 342 507
ARI 1.7 1.45-1.99 3.1x108
c High 562 498
Low 57 1870
BH 4.6 2.97-7.12 1.2 x 1073
S High 262 1853

Table 5. Validation of the combined heart failure (HF) genetic tests in the ARIC and BHS cohorts. Participants were
classified into low- and high-genetic-risk groups and stratified by HF status. One-sided p-values (p) and odds ratios (ORs)
are provided to illustrate the enhanced predictive accuracy of the combined tests relative to Test 1 alone. The 95%
confidence intervals (CIs) reflect the precision of the OR estimates. The relative risk (RR) values were 1.97 for ARIC and
2.28 for BHS.

Cohort Genetic Risk Group HF Cases No HF 95% CI p OR
ARIC Low 241 630
3.06-6.91 23 x107% 4.6
High 663 375 ?
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Low 36
BHS
High 283

2272

7.07-21.39 1.2x107° 12.3

1451

Comparison with clinical risk prediction

In the BB cohort, 1,604 participants without a history of
HF at baseline were analyzed to compare genetic versus
clinical risk prediction. Thirty commonly assessed clinical
factors—including demographics (age, sex,
socioeconomic status), lifestyle (alcohol use, smoking),
anthropometrics (BMI, waist circumference), blood
pressure, serum biomarkers (HDL, LDL, triglycerides,
glucose, total cholesterol), comorbidities (stroke, diabetes,
M1, hypertension), and use of medications for cholesterol,
blood pressure, or diabetes—were incorporated into a Cox
proportional hazards model to estimate the risk of
developing HF over an average follow-up of 10.1 years.
The resulting model produced a C-statistic of 0.75. By
comparison, the genetic test alone achieved a higher
predictive value with a C-statistic of 0.804. Since HF
incidence is higher in older men, including age and sex
further increased the C-statistic to 0.835, while adding the
remaining clinical variables yielded only a modest
increase, reaching 0.86. Overall, combining the genetic
test with all clinical predictors improved discrimination by
0.11 relative to using clinical variables alone.

We developed and validated a novel genetic test for HF
risk across three independent cohorts, representing an
advance in precision cardiovascular medicine by enabling
earlier identification of high-risk individuals. The two-
tiered design of the test offers insight into the complex
genetic underpinnings of HF.

The first-phase test, comprising 41 variants, outperformed
conventional polygenic risk scores (PRSs) typically
applied to cardiovascular conditions, which generally
generate hazard ratios below 1.5 [20]. This enhanced
performance highlights the ability of our approach to
capture meaningful genetic contributions to HF risk,
consistent with evidence that both common and rare
variants, together with environmental interactions,
influence disease susceptibility [21, 22].

The second-phase test targeted individuals flagged as
high-risk in the first phase and incorporated 29 additional
SNPs, refining risk prediction and addressing HF’s genetic
heterogeneity. This two-step approach markedly improved
performance, achieving an AUC of 0.93 and balanced
accuracy of 0.89 in the BB cohort. This strategy builds on
prior findings demonstrating that patient stratification
strengthens the detection of genetic effects [23, 24],
emphasizing the value of iterative refinement in
constructing robust genetic risk models. The integration of
machine learning methods for risk stratification further
enhances predictive capability, setting a high standard for
genetic risk assessment in cardiovascular disease.

Bull Pioneer Res Med Clin Sci, 2022, 2(1):145-153

Validation in geographically and ethnically diverse
cohorts (ARIC and BHS) confirmed the test’s
reproducibility. It also showed predictive utility in
African-American participants within ARIC, indicating
potential  cross-ethnic  applicability.  Nevertheless,
performance differences across cohorts underscore the
need for population-specific refinement, reflecting known
variations in allele frequencies and linkage disequilibrium
patterns across ethnic groups [25]. Future research should
focus on identifying population-specific variants to
optimize predictive accuracy in diverse populations.
Limitations of this study include the predominance of
European ancestry (73%) in the BB cohort, with 27%
representing other ethnicities, which may restrict
generalizability. Despite adjustment for population
structure via principal component analysis (PCA), residual
confounding cannot be excluded. Age and sex differences
between cases and controls could introduce bias, given
that HF is more prevalent in older men; in the BB cohort,
males represented 47% of controls and 53% of cases.
However, the genetic test successfully identified women
who subsequently developed HF. Genotype imputation
was required in ARIC and BHS for missing data, which
could slightly reduce accuracy.

HF diagnosis relied on ICD codes assigned independently
within each cohort. Although some variability may arise
from this approach, prior studies have demonstrated that
ICD coding for HF is generally reliable [26]. The large
cohort sizes further minimize potential inconsistencies,
reinforcing the robustness of our findings.

Our investigation primarily targeted the genetic
underpinnings of HF, though environmental and lifestyle
elements—such as dietary habits, physical activity,
smoking, and socioeconomic factors—were only partially
considered, leaving the possibility of residual
confounding. Additional influences, including
comorbidities and medication usage (e.g., treatments for
hypertension, diabetes, or other cardiovascular
conditions), may independently affect HF risk.
Remarkably, our findings demonstrated that the genetic
markers identified improved risk prediction beyond
conventional clinical measures, suggesting they capture
additional  hereditary = components. Environmental
exposures may explain the limited number of HF cases
observed among participants classified as genetically low-
risk. Furthermore, survivorship bias—stemming from the
inclusion of only controls older than 70 without HF—
could lead to underestimation of genetic effects.
Expanding validation efforts and integrating these factors
into the model are essential for enhancing reliability.
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HF represents a genetically and clinically heterogeneous
condition, encompassing multiple subtypes such as
myocardial ischemia, valvular disease, arrhythmias, and
cardiomyopathies [27, 28]. Each subtype is characterized
by distinct pathophysiology, which can influence genetic
test performance. While our two-step testing framework
addressed some of this heterogeneity, predictive accuracy
may still vary across HF forms. For example, Joseph et al.
[28] recently highlighted genetic differences between
HFrEF and HFpEF, where most loci were associated with
coronary artery disease and hypertension. Future
investigations should assess test performance across HF
subtypes and consider incorporating echocardiographic
parameters to refine predictions further.

The translation of genetic HF testing into clinical settings
involves ethical and logistical challenges. Conveying risk
information to patients requires careful counseling to
ensure comprehension and informed decision-making.
Nevertheless, identifying individuals with elevated
genetic risk before clinical manifestation offers
opportunities for proactive management, including
lifestyle interventions such as weight control, blood
pressure management, and adherence to a cardioprotective
diet, which may delay or prevent HF onset.

This study also highlights directions for future research.
The SNPs identified may point to novel regulatory
mechanisms, particularly in non-coding genomic regions
[29], influencing gene expression through enhancer
activity or chromatin remodeling. Investigating these
mechanisms could shed light on HF pathogenesis and
reveal potential therapeutic targets. Incorporating data
from additional ethnic populations and integrating
environmental and lifestyle variables could enhance both
predictive accuracy and clinical relevance. Longitudinal
studies will also be crucial to evaluate test performance
over time and its utility in monitoring disease progression
or response to interventions [30].

Our results align with recent GWAS and multi-trait
analyses of HF, which identified several loci associated
with disease risk [31, 32]. Eight SNPs in our test
overlapped with previously reported loci, supporting the
validity of our approach. Non-overlapping SNPs likely
reflect differences in study design, particularly our focus
on SNP-SNP interactions, as well as variations in study
populations and specific HF-related traits. These findings
underscore the need for collaborative efforts to standardize
genetic data and optimize HF risk prediction models.

Materials and Methods

Cohort descriptions

Genetic and clinical data were collected from three distinct
cohorts with varied demographic and clinical
characteristics:

Bull Pioneer Res Med Clin Sci, 2022, 2(1):145-153

Baker Biobank (BB) [33]: Individuals aged 18—69 were
enrolled between 2000 and 2011, with detailed data
collected on demographics, lifestyle, anthropometrics,
medical history, medication use, and blood biomarkers.
Biological samples included Guthrie cards, plasma, serum,
buffy coat, and whole blood preserved in Tempus tubes for
RNA extraction; some samples also contained extracted
DNA and RNA. Data were linked to echocardiography,
hospital admissions, pathology, and mortality records. HF
status was determined from medical records at enrollment
or ICD-coded linked datasets [34]. DNA from all HF cases
and controls over 70 without HF was genotyped using the
Illumina GSA array at the Australian Genome Research
Facility, covering more than 700,000 SNPs.
Atherosclerosis Risk in Communities (ARIC) [35]: This
community-based study followed 15,792 adults aged 45—
64 from multiple ethnic groups to monitor MI, CHD, and
mortality. Its primary goal was to identify factors
contributing to subclinical atherosclerosis and CHD.
Clinical and genetic data were accessed through NIH
dbGAP.

Busselton Health Study (BHS) [36]: As one of the longest-
running epidemiologic programs globally, BHS tracks
residents of Busselton, Western Australia, with some
participants enrolled since 1966. The study focuses on
cardiovascular and respiratory risk factors through
population-wide surveys, longitudinal follow-up, and
collection of serum and DNA. Genetic and clinical data
from a 1990s survey were made available by the study
coordinators upon approval.

Genetic analyses

We applied three separate approaches to construct genetic
signatures based on disease-related data structures and
associated weights, utilizing both conventional association
analysis and SNP-SNP interaction searches implemented
in Plink 1.9 (http://pngu.mgh.harvard.edu/purcell/plink/,
last accessed 14 February 2025) [37]. Initially, a case—
control study was established, selecting controls from the
BB cohort who were over 70 years old and free of HF, to
reduce the likelihood of including younger individuals
who might develop HF later, consistent with strategies
used in other late-onset disease genetics studies (e.g.,
[38]). The dataset was randomly split into a discovery
subset (500 participants) and a testing subset (2167
participants). The discovery subset was used to implement
a multi-stage deep neural network (DNN) pipeline,
efficiently utilizing extensive weight coverage while
incorporating weights from previous cycles. To minimize
demographic confounding, only individuals of European
descent were included in the training set, with ancestry
verified via PCA against known cohorts; these individuals
represented 73% of the BB cohort. The analysis required
substantial computational resources, performed on the
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Pawsey Supercomputer Facility (www.pawsey.org.au, last
accessed 16 February 2025). This pipeline identified 41
SNPs with significant associations and interactions,
enabling the model to effectively discriminate cases from
controls.

Significant SNP-SNP interactions were integrated into an
artificial neural network, serving as weighted factors in the
construction of a quantitative risk score (QRS), thereby
enhancing predictive accuracy. Statistical models included
data from all participants to comprehensively define risk,
and each subject’s QRS was calculated. Individuals were
classified as high- or low-risk using QRS thresholds set at
the 90th percentile of the control group.

A second-phase test focused exclusively on high-risk
individuals identified in the first test, including all true
positives and false positives. By excluding the SNPs from
Test 1, 29 new SNPs were identified to define risk for this
second-phase assessment. Both tests were developed using
only whole-genome genotyped data. After assigning risk
via Tests 1 and 2, validation was conducted in a reserved
BB test set, followed by further confirmation in
independent ARIC and BHS cohorts.

Genotype imputation

All SNPs used in the BB cohort were directly genotyped;
however, variations in reference panels and genotyping
methods across cohorts caused substantial missingness for
several of the 41 HF-associated SNPs. Specifically, in the
ARIC and BHS cohorts, eight SNPs from Test 1 and five
SNPs from Test 2 exhibited low genotyping quality,
resulting in missing data for roughly 10% of individuals.
To remedy this, genotype imputation was performed using
the TopMed Imputation Server with the Michigan
Imputation Server pipeline employing Minimac4 [39],
based on GRCh38/hg38 reference data. Older genome
builds for the BHS cohort were lifted over to
GRCh38/hg38. Accuracy of imputation was assessed by
comparing the imputed SNPs to their original genotyped
values, achieving over 99% concordance, a substantial
improvement over the previous 68% accuracy obtained
with the 1000 Genomes Panel in hg19.

Statistical analyses

Statistical significance for the analyses was assessed using
Fisher’s  exact test via the online tool
(https://www .langsrud.com/fisher.htm) (last accessed 16
February 2025), with a two-sided p-value below 10E-5
considered significant. Additional diagnostic measures,
including the odds ratio (OR) and relative risk (RR), were
computed using standard procedures (see ref. [40] for a
review), with significance defined as OR >2 or RR > 1.5.
The OR quantifies the relationship between an exposure
(e.g., genetic predisposition) and an outcome (e.g., heart
failure), where OR > 1 indicates higher odds of the
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outcome with the exposure, and OR < 1 implies a
protective effect. The ARIC and BHS cohorts, being
community-based, were evaluated using RR, whereas the
BB cohort, as a case—control study, employed OR for
analysis.

Risk prediction performance was visualized using
Kaplan—-Meier (KM) survival curves, with the x-axis
representing temporal variables such as age at diagnosis,
and the y-axis showing the proportion of disease-free
individuals. KM curves for different genetic risk groups
were generated via Eureka Statistics
(https://eurekastatistics.com) (last accessed 16 February
2025), which also provided 95% confidence intervals.
Greater separation between curves indicates more
pronounced differences between groups.

Balanced Accuracy (BAC), a metric particularly useful for
imbalanced datasets in classification tasks, was considered
meaningful if exceeding 0.6. BAC reflects model
performance by averaging sensitivity (true positive rate)
and specificity (true negative rate), offering a more holistic
assessment of classification across both classes.

To compare the genetic tests with HF prediction based on
conventional clinical variables, survival analyses were
conducted on 1604 participants free of HF at baseline
using multivariable Cox regression. In the BB cohort, 30
previously established HF-associated variables were
included, and model discrimination was evaluated via C-
statistics, paralleling prior analyses [41]. The model
included all variables without selection, prioritizing
maximum discriminatory ability over parsimony for cross-
cohort applicability. Missing clinical data were handled
through multiple imputation with chained equations (10
datasets) using the “mice” package in R v4.2.2, with
pooled results calculated via Rubin’s rules.

To address the risk of Type I errors due to multiple
simultaneous hypotheses, Bonferroni correction was
applied to control the family-wise error rate (FWER),
thereby reducing the probability of false positives across
all statistical tests.

Conclusion

Overall, this study advances understanding of HF genetics
by developing a refined genetic test capable of predicting
HF risk. This tool holds promise for enabling early
intervention and tailoring personalized treatment
strategies. Although further validation and integration
with non-genetic factors are needed, the findings offer
potential to improve outcomes in HF, a condition
associated with substantial morbidity and mortality
worldwide. Future work should focus on refining the test
and ensuring its ethical clinical application, and we
encourage collaborative efforts to extend its use to diverse
populations.
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